1
|
Shi T, Sun X, Yuan Q, Wang J, Shen X. Exploring the role of flavin-dependent monooxygenases in the biosynthesis of aromatic compounds. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:46. [PMID: 38520003 PMCID: PMC10958861 DOI: 10.1186/s13068-024-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Hydroxylated aromatic compounds exhibit exceptional biological activities. In the biosynthesis of these compounds, three types of hydroxylases are commonly employed: cytochrome P450 (CYP450), pterin-dependent monooxygenase (PDM), and flavin-dependent monooxygenase (FDM). Among these, FDM is a preferred choice due to its small molecular weight, stable expression in both prokaryotic and eukaryotic fermentation systems, and a relatively high concentration of necessary cofactors. However, the catalytic efficiency of many FDMs falls short of meeting the demands of large-scale production. Additionally, challenges arise from the limited availability of cofactors and compatibility issues among enzyme components. Recently, significant progress has been achieved in improving its catalytic efficiency, but have not yet detailed and informative viewed so far. Therefore, this review emphasizes the advancements in FDMs for the biosynthesis of hydroxylated aromatic compounds and presents a summary of three strategies aimed at enhancing their catalytic efficiency: (a) Developing efficient enzyme mutants through protein engineering; (b) enhancing the supply and rapid circulation of critical cofactors; (c) facilitating cofactors delivery for enhancing FDMs catalytic efficiency. Furthermore, the current challenges and further perspectives on improving catalytic efficiency of FDMs are also discussed.
Collapse
Affiliation(s)
- Tong Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
2
|
Maksymiuk KM, Szudzik M, Samborowska E, Chabowski D, Konop M, Ufnal M. Mice, rats, and guinea pigs differ in FMOs expression and tissue concentration of TMAO, a gut bacteria-derived biomarker of cardiovascular and metabolic diseases. PLoS One 2024; 19:e0297474. [PMID: 38266015 PMCID: PMC10807837 DOI: 10.1371/journal.pone.0297474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Increased plasma trimethylamine oxide (TMAO) is observed in cardiovascular and metabolic diseases, originating from the gut microbiota product, trimethylamine (TMA), via flavin-containing monooxygenases (FMOs)-dependent oxidation. Numerous studies have investigated the association between plasma TMAO and various pathologies, yet limited knowledge exists regarding tissue concentrations of TMAO, TMAO precursors, and interspecies variability. METHODS Chromatography coupled with mass spectrometry was employed to evaluate tissue concentrations of TMAO and its precursors in adult male mice, rats, and guinea pigs. FMO mRNA and protein levels were assessed through PCR and Western blot, respectively. RESULTS Plasma TMAO levels were similar among the studied species. However, significant differences in tissue concentrations of TMAO were observed between mice, rats, and guinea pigs. The rat renal medulla exhibited the highest TMAO concentration, while the lowest was found in the mouse liver. Mice demonstrated significantly higher plasma TMA concentrations compared to rats and guinea pigs, with the highest TMA concentration found in the mouse renal medulla and the lowest in the rat lungs. FMO5 exhibited the highest expression in mouse liver, while FMO3 was highly expressed in rats. Guinea pigs displayed low expression of FMOs in this tissue. CONCLUSION Despite similar plasma TMAO levels, mice, rats, and guinea pigs exhibited significant differences in tissue concentrations of TMA, TMAO, and FMO expression. These interspecies variations should be considered in the design and interpretation of experimental studies. Furthermore, these findings may suggest a diverse importance of the TMAO pathway in the physiology of the evaluated species.
Collapse
Affiliation(s)
- Klaudia M. Maksymiuk
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Szudzik
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Emilia Samborowska
- Mass spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Chabowski
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Konop
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Tang HY, Huang JE, Tsau MT, Chang CJ, Tung YC, Lin G, Cheng ML. Metabolomics Assessment of Volume Overload-Induced Heart Failure and Oxidative Stress in the Kidney. Metabolites 2023; 13:1165. [PMID: 37999260 PMCID: PMC10672757 DOI: 10.3390/metabo13111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
The incidence of heart failure (HF) is increasing and is associated with a poor prognosis. Moreover, HF often coexists with renal dysfunction and is associated with a worsened outcome. In many experimental studies on cardiac dysfunction, the function of other organs was either not addressed or did not show any decline. Until now, the exact mechanisms for initiating and sustaining this interaction are still unknown. The objective of this study is to use volume overload to induce cardiac hypertrophy and HF in aortocaval fistula (ACF) rat models, and to elucidate how volume overload affects metabolic changes in the kidney, even with normal renal function, in HF. The results showed the metabolic changes between control and ACF rats, including taurine metabolism; purine metabolism; glycine, serine, and threonine metabolism; glycerophospholipid metabolism; and histidine metabolism. Increasing the downstream purine metabolism from inosine to uric acid in the kidneys of ACF rats induced oxidative stress through xanthine oxidase. This result was consistent with HK-2 cells treated with xanthine and xanthine oxidase. Under oxidative stress, taurine accumulation was observed in ACF rats, indicating increased activity of the hypotaurine-taurine pathway as a defense mechanism against oxidative stress in the kidney. Another antioxidant, ascorbic acid 2-sulfate, showed lower levels in ACF rats, indicating that the kidneys experience elevated oxidative stress due to volume overload and HF. In summary, metabolic profiles are more sensitive than clinical parameters in reacting to damage to the kidney in HF.
Collapse
Affiliation(s)
- Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; (H.-Y.T.); (M.-T.T.)
| | - Jyh-En Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Ming-Tong Tsau
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; (H.-Y.T.); (M.-T.T.)
| | - Chi-Jen Chang
- Department of Cardiology, Linkou Chang Gung Memorial Hospital, Taoyuan City 33323, Taiwan; (C.-J.C.); (Y.-C.T.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Ying-Chang Tung
- Department of Cardiology, Linkou Chang Gung Memorial Hospital, Taoyuan City 33323, Taiwan; (C.-J.C.); (Y.-C.T.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Gigin Lin
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 33323, Taiwan;
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33323, Taiwan
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung University, Taoyuan City 33323, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; (H.-Y.T.); (M.-T.T.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 33323, Taiwan;
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
4
|
Guo F, Tian Y, Ji S, Min H, Ding W, Yu H, Li Y, Ji L. Environmental biotransformation mechanisms by flavin-dependent monooxygenase: A computational study. CHEMOSPHERE 2023; 325:138403. [PMID: 36921778 DOI: 10.1016/j.chemosphere.2023.138403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The enzyme-catalyzed metabolic biotransformation of xenobiotics plays a significant role in toxicology evolution and subsequently environmental health risk assessment. Recent studies noted that the phase I human flavin-dependent monooxygenase (e.g., FMO3) can catalyze xenobiotics into more toxic metabolites. However, details of the metabolic mechanisms are insufficient. To fill the mechanism in the gaps, the systemic density functional theory calculations were performed to elucidate diverse FMO-catalyzed oxidation reactions toward environmental pollutants, including denitrification (e.g., nitrophenol), N-oxidation (e.g., nicotine), desulfurization (e.g., fonofos), and dehalogenation (e.g., pentachlorophenol). Similar to the active center compound 0 of cytochrome P450, FMO mainly catalyzed reactions with the structure of the tricyclic isoalloxazine C-4a-hydroperoxide (FADHOOH). As will be shown, FMO-catalyzed pathways are more favorable with a concerted than stepwise mechanism; Deprotonation is necessary to initiate the oxidation reactions for phenolic substrates; The regioselectivity of nicotine by FMO prefers the N-oxidation other than N-demethylation pathway; Formation of the P-S-O triangle ring is the key step for desulfurization of fonofos by FMO. We envision that these fundamental mechanisms catalyzed by FMO with a computational method can be extended to other xenobiotics of similar structures, which may aid the high-throughput screening and provide theoretical predictions in the future.
Collapse
Affiliation(s)
- Fangjie Guo
- Quality and Safety Engineering Institute of Food and Drug, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yilin Tian
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shujing Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Hao Min
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yingqi Li
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining 314400, China
| | - Li Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.
| |
Collapse
|
5
|
Cheropkina H, Catucci G, Cesano F, Marucco A, Gilardi G, Sadeghi SJ. Bioelectrochemical platform with human monooxygenases: FMO1 and CYP3A4 tandem reactions with phorate. Bioelectrochemistry 2023; 150:108327. [PMID: 36446195 DOI: 10.1016/j.bioelechem.2022.108327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
It is highly advantageous to devise an in vitro platform that can predict the complexity of an in vivo system. The first step of this process is the identification of a xenobiotic whose monooxygenation is carried out by two sequential enzymatic reactions. Pesticides are a good model for this type of tandem reactions since in specific cases they are initially metabolised by human flavin-containing monooxygenase 1 (hFMO1), followed by cytochrome P450 (CYP). To assess the feasibility of such an in vitro platform, hFMO1 is immobilised on glassy carbon electrodes modified with graphene oxide (GO) and cationic surfactant didecyldimethylammonium bromide (DDAB). UV-vis, contact angle and AFM measurements support the effective decoration of the GO sheets by DDAB which appear as 3 nm thick structures. hFMO1 activity on the bioelectrode versus three pesticides; fenthion, methiocarb and phorate, lead to the expected sulfoxide products with KM values of 29.5 ± 5.1, 38.4 ± 7.5, 29.6 ± 4.1 µM, respectively. Moreover, phorate is subsequently tested in a tandem system with hFMO1 and CYP3A4 resulting in both phorate sulfoxide as well as phoratoxon sulfoxide. The data demonstrate the feasibility of using bioelectrochemical platforms to mimic the complex metabolic reactions of xenobiotics within the human body.
Collapse
Affiliation(s)
- Hanna Cheropkina
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina, Torino 10123, Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina, Torino 10123, Italy
| | - Federico Cesano
- Department of Chemistry & INSTM-UdR Torino, Via Giuria 7, Torino 10125, Italy; Centre for Nanostructured Interfaces and Surfaces, University of Torino, via Pietro Giuria 7, 10125 Torino, Italy
| | - Arianna Marucco
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina, Torino 10123, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina, Torino 10123, Italy; Centre for Nanostructured Interfaces and Surfaces, University of Torino, via Pietro Giuria 7, 10125 Torino, Italy
| | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina, Torino 10123, Italy; Centre for Nanostructured Interfaces and Surfaces, University of Torino, via Pietro Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
6
|
Ernst S, Mährlein A, Ritzmann NH, Drees SL, Fetzner S. A comparative study of
N
‐hydroxylating flavoprotein monooxygenases reveals differences in kinetics and cofactor binding. FEBS J 2022; 289:5637-5655. [DOI: 10.1111/febs.16444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Simon Ernst
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| | - Almuth Mährlein
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| | - Niklas H. Ritzmann
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| | - Steffen L. Drees
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| | - Susanne Fetzner
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| |
Collapse
|
7
|
He T, Yang X. Catalyst-free addition/sulfonyl-assisted nucleophilic N–F hydrolysis of α-methylstyrenes with N,N-Difluorobenzenesulfonamides. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|