1
|
He P, Jing J, Du L, Zhang X, Ren Y, Yang H, Yu B, Liu H. Discovery of YS-363 as a highly potent, selective, and orally efficacious EGFR inhibitor. Biomed Pharmacother 2023; 167:115491. [PMID: 37722187 DOI: 10.1016/j.biopha.2023.115491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the standard first-line therapy for EGFR-mutated NSCLC. However, long-term clinical treatment often leads to acquired drug resistance, making NSCLC refractory. Therefore, it is essential to design new EGFR inhibitors as potential drugs against NSCLC. This study reports on a novel quinazoline-based compound called YS-363 that acts as a new EGFR inhibitor. YS-363 demonstrated potent inhibition against both wild-type and L858R mutant forms of EGFR with IC50 values of 0.96 nM and 0.67 nM, respectively. Additionally, YS-363 had a reversible inhibitory effect on cellular EGFR signaling, had excellent inhibitory activity on cell proliferation and migration, and induced G0/G1 cell cycle arrest and apoptosis. In xenograft models dependent on EGFR signaling, oral administration of YS-363 substantially suppressed tumor growth by inhibiting this pathway. In summary, YS-363 is a promising selective reversible inhibitor with a novel quinazoline scaffold that can potentially develop more effective anti-lung cancer agents targeting EGFR in patients who have developed resistance to current therapies such as TKIs like gefitinib or erlotinib.
Collapse
Affiliation(s)
- Pengxing He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Jing
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Linna Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xuyang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yufei Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Han Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Lin CI, Chen ZC, Chen CH, Chang YH, Lee TC, Tang TT, Yu TW, Yang CM, Tsai MC, Huang CC, Yang TW, Lin CC, Wang RH, Chiou GY, Jong YJ, Chao JI. Co-inhibition of Aurora A and Haspin kinases enhances survivin blockage and p53 induction for mitotic catastrophe and apoptosis in human colorectal cancer. Biochem Pharmacol 2022; 206:115289. [PMID: 36241092 DOI: 10.1016/j.bcp.2022.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is a leading cause and mortality worldwide. Aurora A and haspin kinases act pivotal roles in mitotic progression. However, the blockage of Aurora A and Haspin for CRC therapy is still unclear. Here we show that the Haspin and p-H3T3 protein levels were highly expressed in CRC tumor tissues of clinical patients. Overexpression of Haspin increased the protein levels of p-H3T3 and survivin in human CRC cells; conversely, the protein levels of p-H3T3 and survivin were decreased by the Haspin gene knockdown. Moreover, the gene knockdown of Aurora A induced abnormal chromosome segregation, mitotic catastrophe, and cell growth inhibition. Combined targeted by co-treatment of CHR6494, a Haspin inhibitor, and MLN8237, an Aurora A inhibitor, enhanced apoptosis and CRC tumor inhibition. MLN8237 and CHR6494 induced abnormal chromosome segregation and mitotic catastrophe. Meanwhile, MLN8237 and CHR6494 inhibited survivin protein levels but conversely induced p53 protein expression. Ectopic survivin expression by transfection with a survivin-expressed vector resisted the cell death in the MLN8237- and CHR6494-treated cells. In contrast, the existence of functional p53 increased the apoptotic levels by treatment with MLN8237 and CHR6494. Co-treatment of CHR6494 and MLN8237 enhanced the blockage of human CRC xenograft tumors in nude mice. Taken together, co-inhibition of Aurora A and Haspin enhances survivin inhibition, p53 pathway induction, mitotic catastrophe, apoptosis and tumor inhibition that may provide a potential strategy for CRC therapy.
Collapse
Affiliation(s)
- Chien-I Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Zan-Chu Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chien-Hung Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yun-Hsuan Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsai-Chia Lee
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsai-Tai Tang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tzu-Wei Yu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chih-Man Yang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ming-Chang Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Chou Huang
- Division of Colon and Rectum, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Wei Yang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Che Lin
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Rou-Hsin Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Guang-Yuh Chiou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yuh-Jyh Jong
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Departments of Pediatrics and Laboratory Medicine, and Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Jui-I Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| |
Collapse
|
3
|
Li QM, Lin GS, Duan WG, Cui YC, Li FY, Lei FH, Li DP. Design, synthesis, and antiproliferative evaluation of novel longifolene-derived tetraline pyrimidine derivatives with fluorescence properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj01054b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the search for novel compounds with both survivin inhibitory activity and fluorescence properties, 18 novel longifolene-derived tetralin pyrimidine compounds were designed using survivin as the target and synthesized from the sustainable natural resource longifolene.
Collapse
Affiliation(s)
- Qing-Min Li
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue Dong Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Gui-Shan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue Dong Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Wen-Gui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue Dong Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Yu-Cheng Cui
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue Dong Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Fang-Yao Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, 530004, People's Republic of China
| | - Fu-Hou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, Guangxi, 530004, People's Republic of China
| | - Dian-Peng Li
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| |
Collapse
|