1
|
Yang Y, Wu P, Guo J, Pan Z, Lin S, Zeng W, Wang C, Dong Z, Wang S. Circadian time-dependent effects of experimental colitis on theophylline disposition and toxicity. Br J Pharmacol 2024; 181:3743-3759. [PMID: 38862812 DOI: 10.1111/bph.16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND AND PURPOSE Drug disposition undergoes significant alteration in patients with inflammatory bowel disease (IBD), yet circadian time-dependency of these changes remains largely unexplored. In this study, we aimed to determine the temporal effects of experimental colitis on drug disposition and toxicity. EXPERIMENTAL APPROACH RNA-sequencing was used to screen genes relevant to colitis induced by dextran sodium sulfate in mice. Liver microsomes and pharmacokinetic analysis were used to analyze the activity of key enzymes. Dual luciferase assays and chromatin immunoprecipitation (ChIP) were employed to elucidate regulatory mechanisms. KEY RESULTS RNA sequencing analysis revealed that colitis markedly influenced expression of cytochrome P450 (CYP) enzymes. Specifically, a substantial down-regulation of CYP1A2 and CYP2E1 was observed in livers of mice with colitis at Zeitgeber Time 8 (ZT8), with no significant changes detected at ZT20. At ZT8, the altered expression corresponded to diminished metabolism and enhanced incidence of hepato-cardiac toxicity of theophylline, a substrate specifically metabolized by these enzymes. A combination of assays, integrating liver-specific Bmal1 knockout and targeted activation of BMAL1 showed that dysregulation in CYP1A2 and CYP2E1 during colitis was attributable to perturbed BMAL1 functionality. Luciferase reporter and ChIP assays collectively substantiated the role of BMAL1 in regulating Cyp1a2 and Cyp2e1 transcription through its binding affinity to E-box-like sites. CONCLUSION AND IMPLICATION Our findings establish a strong link between colitis and chronopharmacology, shedding light on how IBD affects drug disposition and toxicity over time. This research provides a theoretical foundation for optimizing drug dosage in patients with IBD.
Collapse
Affiliation(s)
- Yi Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pengcheng Wu
- Department of Emergency Medicine, Zhongshan Torch Development Zone People's Hospital, Zhongshan, China
| | - Juntao Guo
- Department of Emergency, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhixi Pan
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shubin Lin
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanying Zeng
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhiyong Dong
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuai Wang
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Okyar A, Ozturk Civelek D, Akyel YK, Surme S, Pala Kara Z, Kavakli IH. The role of the circadian timing system on drug metabolism and detoxification: an update. Expert Opin Drug Metab Toxicol 2024; 20:503-517. [PMID: 38753451 DOI: 10.1080/17425255.2024.2356167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The 24-hour variations in drug absorption, distribution, metabolism, and elimination, collectively known as pharmacokinetics, are fundamentally influenced by rhythmic physiological processes regulated by the molecular clock. Recent advances have elucidated the intricacies of the circadian timing system and the molecular interplay between biological clocks, enzymes and transporters in preclinical level. AREA COVERED Circadian rhythm of the drug metabolizing enzymes and carrier efflux functions possess a major role for drug metabolism and detoxification. The efflux and metabolism function of intestines and liver seems important. The investigations revealed that the ABC and SLC transporter families, along with cytochrome p-450 systems in the intestine, liver, and kidney, play a dominant role in the circadian detoxification of drugs. Additionally, the circadian control of efflux by the blood-brain barrier is also discussed. EXPERT OPINION The influence of the circadian timing system on drug pharmacokinetics significantly impacts the efficacy, adverse effects, and toxicity profiles of various drugs. Moreover, the emergence of sex-related circadian changes in the metabolism and detoxification processes has underscored the importance of considering gender-specific differences in drug tolerability and pharmacology. A better understanding of coupling between central clock and circadian metabolism/transport contributes to the development of more rational drug utilization and the implementation of chronotherapy applications.
Collapse
Affiliation(s)
- Alper Okyar
- Department of Pharmacology, Istanbul University Faculty of Pharmacy, Istanbul, Turkiye
| | - Dilek Ozturk Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkiye
| | - Yasemin Kubra Akyel
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Saliha Surme
- Molecular Biology and Genetics, Koc University, Istanbul, Türkiye
- Chemical and Biological Engineering, Koc University, Istanbul, Türkiye
| | - Zeliha Pala Kara
- Department of Pharmacology, Istanbul University Faculty of Pharmacy, Istanbul, Turkiye
| | - I Halil Kavakli
- Molecular Biology and Genetics, Koc University, Istanbul, Türkiye
- Chemical and Biological Engineering, Koc University, Istanbul, Türkiye
| |
Collapse
|
3
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang C, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2024:S2090-1232(24)00133-4. [PMID: 38631431 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
4
|
Hermida RC, Smolensky MH, Mojón A, Fernández JR. Clinical trial design for assessing hypertension medications: are critical circadian chronopharmacological principles being taking into account? Expert Rev Clin Pharmacol 2024; 17:119-130. [PMID: 38197151 DOI: 10.1080/17512433.2024.2304015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Clinical hypertension trials typically rely on homeostatic principles, including single time-of-day office blood pressure (BP) measurements (OBPM), rather than circadian chronopharmacological principles, including ambulatory monitoring (ABPM) done around-the-clock to derive the asleep systolic BP (SBP) mean and sleep-time relative SBP decline - jointly the strongest prognosticators of cardiovascular disease (CVD) risk and true definition of hypertension - to qualify participants and assess outcomes. AREAS COVERED Eight chronopharmacological elements are indispensable for design and conduct of hypertension medication trials, mainly those on ingestion-time differences in effects, and also a means of rating quality of investigations. Accordingly, we highlight the findings and shortcomings of: (i) 155 such ingestion-time trials, 83.9% finding at-bedtime/evening treatment more beneficial than conventional upon-awakening/morning treatment; (ii) HOPE and ONTARGET CVD outcomes investigations assessing in the former add-on ramipril at-bedtime and in the latter telmisartan, ramipril, or both in combination in the morning; and (iii) pragmatic TIME CVD outcomes trial. EXPERT OPINION Failure to incorporate chronopharmacological principals - including ABPM to derive asleep SBP and SBP dipping to qualify subjects as hypertensive and assess CVD risk - results in deficient study design, dubious findings, and unnecessary medical controversy at the expense of advances in patient care.
Collapse
Affiliation(s)
- Ramón C Hermida
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Telecommunication Technologies (atlanTTic), Universidade de Vigo, Vigo, Spain
- Bioengineering & Chronobiology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Michael H Smolensky
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Artemio Mojón
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Telecommunication Technologies (atlanTTic), Universidade de Vigo, Vigo, Spain
- Bioengineering & Chronobiology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - José R Fernández
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Telecommunication Technologies (atlanTTic), Universidade de Vigo, Vigo, Spain
- Bioengineering & Chronobiology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
5
|
Cesar-Silva D, Pereira-Dutra FS, Giannini ALM, Maya-Monteiro CM, de Almeida CJG. Lipid compartments and lipid metabolism as therapeutic targets against coronavirus. Front Immunol 2023; 14:1268854. [PMID: 38106410 PMCID: PMC10722172 DOI: 10.3389/fimmu.2023.1268854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Lipids perform a series of cellular functions, establishing cell and organelles' boundaries, organizing signaling platforms, and creating compartments where specific reactions occur. Moreover, lipids store energy and act as secondary messengers whose distribution is tightly regulated. Disruption of lipid metabolism is associated with many diseases, including those caused by viruses. In this scenario, lipids can favor virus replication and are not solely used as pathogens' energy source. In contrast, cells can counteract viruses using lipids as weapons. In this review, we discuss the available data on how coronaviruses profit from cellular lipid compartments and why targeting lipid metabolism may be a powerful strategy to fight these cellular parasites. We also provide a formidable collection of data on the pharmacological approaches targeting lipid metabolism to impair and treat coronavirus infection.
Collapse
Affiliation(s)
- Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lucia Moraes Giannini
- Laboratory of Functional Genomics and Signal Transduction, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa M. Maya-Monteiro
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratory of Endocrinology and Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Cecília Jacques G. de Almeida
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Lin L, Huang Y, Wang J, Guo X, Yu F, He D, Wu C, Guo L, Wu B. CRY1/2 regulate rhythmic CYP2A5 in mouse liver through repression of E4BP4. Biochem Pharmacol 2023; 217:115843. [PMID: 37797722 DOI: 10.1016/j.bcp.2023.115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
CYP2A5, an enzyme responsible for metabolism of diverse drugs, displays circadian rhythms in its expression and activity. However, the underlying mechanisms are not fully established. Here we aimed to investigate a potential role of CRY1/2 (circadian clock modulators) in circadian regulation of hepatic CYP2A5. Regulatory effects of CRY1/2 on CYP2A5 were determined using Cry1-null and Cry2-null mice, and validated using AML-12, Hepa1-6 and HepG2 cells. CYP2A5 activities both in vivo and in vitro were assessed using coumarin 7-hydroxylation as a probe reaction. mRNA and protein levels were detected by qPCR and western blotting, respectively. Regulatory mechanism was studied using a combination of luciferase reporter assays, chromatin immunoprecipitation (ChIP) and co-immunoprecipitation (Co-IP). We found that ablation of Cry1 or Cry2 in mice reduced hepatic CYP2A5 expression (at both mRNA and protein levels) and blunted its diurnal rhythms. Consistently, these knockouts showed decreased CYP2A5 activity (characterised by coumarin 7-hydroxylation) and a loss of its time-dependency, as well as exacerbated coumarin-induced hepatotoxicity. Cell-based assays confirmed that CRY1/2 positively regulated CYP2A5 expression and rhythms. Based on combined luciferase reporter, ChIP and Co-IP assays, we unraveled that CRY1/2 interacted with E4BP4 protein to repress its inhibitory effect on Cyp2a5 transcription and expression. In conclusion, CRY1/2 regulate rhythmic CYP2A5 in mouse liver through repression of E4BP4. These findings advance our understanding of circadian regulation of drug metabolism and pharmacokinetics.
Collapse
Affiliation(s)
- Luomin Lin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuwei Huang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyi Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaocao Guo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Fangjun Yu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di He
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lianxia Guo
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
|