1
|
Ammazzalorso A, Tacconelli S, Contursi A, Hofling U, Cerchia C, Di Berardino S, De Michele A, Amoroso R, Lavecchia A, Patrignani P. A sulfonimide derivative of bezafibrate as a dual inhibitor of cyclooxygenase-2 and PPARα. Front Pharmacol 2024; 15:1488722. [PMID: 39660001 PMCID: PMC11628281 DOI: 10.3389/fphar.2024.1488722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Background PPARα and cyclooxygenase (COX)-2 are overexpressed in certain types of cancer. Thus, developing a dual inhibitor that targets both could be more effective as an anticancer agent than single inhibitors. We have previously shown that an analog of the bezafibrate named AA520 is a PPARα antagonist. Herein, we report the identification of AA520 as a potent COX-2 inhibitor using in silico approaches. In addition, we performed a thorough pharmacological characterization of AA520 towards COX-1 and COX-2 in different in vitro models. Methods AA520 was characterized for inhibiting platelet COX-1 and monocyte COX-2 activity in human whole blood (HWB) and for effects on lipidomics of eicosanoids using LC-MS/MS. The kinetics of the interaction of AA520 with COX-2 was assessed in the human colon cancer cell line, HCA-7, expressing only COX-2, by testing the COX-2 activity after extensive washing of the cells. The impact of AA520 on cancer cell viability, metabolic activity, and cytotoxicity was tested using the MTT reagent. Results In HWB, AA520 inhibited in a concentration-dependent fashion LPS-stimulated leukocyte prostaglandin (PG) E2 generation with an IC50 of 0.10 (95% CI: 0.05-0.263) μM while platelet COX-1 was not affected up to 300 μM. AA520 did not affect LPS-induced monocyte COX-2 expression, and other eicosanoids generated by enzymatic and nonenzymatic pathways. AA520 inhibited COX-2-dependent PGE2 generation in the colon cancer cell line HCA7. Comparison of the inhibition of COX-2 and its reversibility by AA520, indomethacin (a time-dependent inhibitor), acetylsalicylic acid (ASA) (an irreversible inhibitor), and ibuprofen (a reversible inhibitor) showed that the compound is acting by forming a tightly bound COX-2 interaction. This was confirmed by docking and molecular dynamics studies. Moreover, AA520 (1 μM) significantly reduced MTT in HCA7 cells. Conclusion We have identified a highly selective COX-2 inhibitor with a unique scaffold. This inhibitor retains PPARα antagonism at the same concentration range. It has the potential to be effective in treating certain types of cancer, such as hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC), where COX-2 and PPARα are overexpressed.
Collapse
Affiliation(s)
| | - Stefania Tacconelli
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Chieti, Italy
| | - Annalisa Contursi
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Chieti, Italy
| | - Ulrika Hofling
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Chieti, Italy
| | - Carmen Cerchia
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Naples, Italy
| | - Sara Di Berardino
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Chieti, Italy
| | - Alessandra De Michele
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, “G. d’Annunzio” University, Chieti, Italy
| | - Antonio Lavecchia
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Naples, Italy
| | - Paola Patrignani
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Chieti, Italy
| |
Collapse
|
2
|
Zhao Y, Zhou Z, Cui X, Yu Y, Yan P, Zhao W. Enhancing insight into ferroptosis mechanisms in sepsis: A genomic and pharmacological approach integrating single-cell sequencing and Mendelian randomization. Int Immunopharmacol 2024; 140:112910. [PMID: 39121604 DOI: 10.1016/j.intimp.2024.112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
This research investigated the intricate relationship between ferroptosis and sepsis by utilizing advanced genomic and pharmacological methodologies. Specifically, we obtained expression quantitative trait loci (eQTLs) for 435 genes associated with ferroptosis from the eQTLGen Consortium and detected notable cis-eQTLs for 281 of these genes. Next, we conducted a detailed analysis to assess the impact of these eQTLs on susceptibility to sepsis using Mendelian randomization (MR) with data from a cohort of 10,154 sepsis patients and 452,764 controls sourced from the UK Biobank. MR analysis revealed 16 ferroptosis-related genes that exhibited significant associations with sepsis outcomes. To bolster the robustness of these findings, sensitivity analyses were performed to assess pleiotropy and heterogeneity, thus confirming the reliability of the causal inferences. Furthermore, single-cell RNA sequencing data from sepsis patients offered a detailed examination of gene expression profiles, demonstrating varying levels of ferroptosis marker expression across different cell types. Pathway enrichment analysis utilizing gene set enrichment analysis (GSEA) further revealed the key biological pathways involved in the progression of sepsis. Additionally, the use of computational molecular docking facilitated the prediction of interactions between identified genes and potential therapeutic compounds, highlighting novel drug targets. In conclusion, our integrated approach combining genomics and pharmacology offers valuable insights into the involvement of ferroptosis in sepsis, laying the groundwork for potential therapeutic strategies targeting this cell death pathway to enhance sepsis management.
Collapse
Affiliation(s)
- Yuanqi Zhao
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China
| | - Zijian Zhou
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China
| | - Xiuyu Cui
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China
| | - Yiwei Yu
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China
| | - Ping Yan
- Department of Gastroenterology, First Affiliated Hospital of Dali University, Dali, China.
| | - Weidong Zhao
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China; Department of Clinical Laboratory, Second Infectious Disease Hospital of Yunnan Province, Dali, China; Immunology Discipline Team, School of Basic Medicine, Dali University, Dali, China.
| |
Collapse
|
3
|
Contursi A, Tacconelli S, Di Berardino S, De Michele A, Patrignani P. Platelets and extracellular vesicles in disease promotion via cellular cross-talk and eicosanoid biosynthesis. Prostaglandins Other Lipid Mediat 2024; 173:106848. [PMID: 38723943 DOI: 10.1016/j.prostaglandins.2024.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 06/17/2024]
Abstract
New insights have been gained on the role of platelets beyond thrombosis. Platelets can accumulate in damaged and inflamed tissues, acting as a sentinel to detect and repair tissue damage. However, by releasing several soluble factors, including thromboxane A2 (TXA2) and 12-hydroxyeicosatetraenoic acid, and extracellular vesicles (EVs), platelets can activate vascular cells, stromal, such as fibroblasts, immune cells, and cancer cells, leading to atherosclerosis, vascular restenosis, tissue fibrosis, and tumor metastasis. Platelet-derived extracellular vesicles (PEVs) are released when platelets are activated and can transfer their cargo to other cell types, thus contributing to the development of diseases. Inhibitors of the internalization of PEVs can potentially represent novel therapeutic tools. Both platelets and PEVs contain a significant number of different types of molecules, and their omics assessment and integration with clinical data using computational approaches have the potential to detect early disease development and monitor drug treatments.
Collapse
Affiliation(s)
- Annalisa Contursi
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University Medical School, Chieti, Italy
| | - Stefania Tacconelli
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Sara Di Berardino
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University Medical School, Chieti, Italy
| | - Alessandra De Michele
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University Medical School, Chieti, Italy
| | - Paola Patrignani
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University Medical School, Chieti, Italy.
| |
Collapse
|
4
|
Yang W, Feng R, Peng G, Wang Z, Cen M, Jing Y, Feng W, Long T, Liu Y, Li Z, Huang K, Chang G. Glycoursodeoxycholic Acid Alleviates Arterial Thrombosis via Suppressing Diacylglycerol Kinases Activity in Platelet. Arterioscler Thromb Vasc Biol 2024; 44:1283-1301. [PMID: 38572646 DOI: 10.1161/atvbaha.124.320728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Glycoursodeoxycholic acid (GUDCA) has been acknowledged for its ability to regulate lipid homeostasis and provide benefits for various metabolic disorders. However, the impact of GUDCA on arterial thrombotic events remains unexplored. The objective of this study is to examine the effects of GUDCA on thrombogenesis and elucidate its underlying mechanisms. METHODS Plasma samples from patients with arterial thrombotic events and diet-induced obese mice were collected to determine the GUDCA concentrations using mass spectrometry. Multiple in vivo murine thrombosis models and in vitro platelet functional assays were conducted to comprehensively evaluate the antithrombotic effects of GUDCA. Moreover, lipidomic analysis was performed to identify the alterations of intraplatelet lipid components following GUDCA treatment. RESULTS Plasma GUDCA level was significantly decreased in patients with arterial thrombotic events and negatively correlated with thrombotic propensity in diet-induced obese mice. GUDCA exhibited prominent suppressing effects on platelet reactivity as evidenced by the attenuation of platelet activation, secretion, aggregation, spreading, and retraction (P<0.05). In vivo, GUDCA administration robustly alleviated thrombogenesis (P<0.05) without affecting hemostasis. Mechanistically, GUDCA inhibited DGK (diacylglycerol kinase) activity, leading to the downregulation of the phosphatidic acid-mediated signaling pathway. Conversely, phosphatidic acid supplementation was sufficient to abolish the antithrombotic effects of GUDCA. More importantly, long-term oral administration of GUDCA normalized the enhanced DGK activity, thereby remarkably alleviating the platelet hyperreactivity as well as the heightened thrombotic tendency in diet-induced obese mice (P<0.05). CONCLUSIONS Our study implicated that GUDCA reduces platelet hyperreactivity and improves thrombotic propensity by inhibiting DGKs activity, which is a potentially effective prophylactic approach and promising therapeutic agent for arterial thrombotic events.
Collapse
Affiliation(s)
- Wenchao Yang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Ruijia Feng
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Guiyan Peng
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Zhecun Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China (M.C.)
| | - Yexiang Jing
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Weiqi Feng
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Ting Long
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Yunchong Liu
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Zilun Li
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Kan Huang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Guangqi Chang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| |
Collapse
|
5
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Di Cera E. Pass the 12-LOX! Blood 2023; 142:1180-1181. [PMID: 37796520 PMCID: PMC10579041 DOI: 10.1182/blood.2023021939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
|
7
|
Ma Y, Wu S, Zhao F, Li H, Li Q, Zhang J, Li H, Yuan Z. Hirudin inhibits glioma growth through mTOR-regulated autophagy. J Cell Mol Med 2023; 27:2701-2713. [PMID: 37539490 PMCID: PMC10494300 DOI: 10.1111/jcmm.17851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/05/2023] Open
Abstract
Glioma is the most common primary malignant brain tumour, and survival is poor. Hirudin has anticancer pharmacological effects through suppression of glioma cell progression, but the molecular target and mechanism are poorly understood. In this study, we observed that hirudin dose- and time-dependently inhibited glioma invasion, migration and proliferation. Mechanistically, hirudin activated LC3-II but not Caspase-3 to induce the autophagic death of glioma cells by decreasing the phosphorylation of mTOR and its downstream substrates ULK1, P70S6K and 4EBP1. Furthermore, hirudin inhibited glioma growth and induced changes in autophagy in cell-derived xenograft (CDX) nude mice, with a decrease in mTOR activity and activation of LC3-II. Collectively, our results highlight a new anticancer mechanism of hirudin in which hirudin-induced inhibition of glioma progression through autophagy activation is likely achieved by inhibition of the mTOR signalling pathway, thus providing a molecular basis for hirudin as a potential and effective clinical drug for glioma therapy.
Collapse
Affiliation(s)
- Ying Ma
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Senbin Wu
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Fanyi Zhao
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Huifeng Li
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Qiaohong Li
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Jingzhi Zhang
- Department of Traditional Chinese MedicineThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hua Li
- Laboratory animal center, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Zhongmin Yuan
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
- Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangzhouChina
| |
Collapse
|
8
|
Hébert MPA, Selka A, Lebel AA, Doiron JA, Isabel Chiasson A, Gauvin VL, Matthew AJ, Hébert MJG, Doucet MS, Joy AP, Barnett DA, Touaibia M, Surette ME, Boudreau LH. Caffeic acid phenethyl ester analogues as selective inhibitors of 12-lipoxygenase product biosynthesis in human platelets. Int Immunopharmacol 2023; 121:110419. [PMID: 37295028 DOI: 10.1016/j.intimp.2023.110419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023]
Abstract
The inflammatory response is an essential process for the host defence against pathogens. Lipid mediators are important in coordinating the pro-inflammatory and pro-resolution phases of the inflammatory process. However, unregulated production of these mediators has been associated with chronic inflammatory diseases such as arthritis, asthma, cardiovascular diseases, and several types of cancer. Therefore, it is not surprising that enzymes implicated in the production of these lipid mediators have been targeted for potential therapeutic approaches. Amongst these inflammatory molecules, the 12-hydroxyeicosatetraenoic acid (12(S)-HETE) is abundantly produced in several diseases and is primarily biosynthesized via the platelet's 12-lipoxygenase (12-LO) pathway. To this day, very few compounds selectively inhibit the 12-LO pathway, and most importantly, none are currently used in the clinical settings. In this study, we investigated a series of polyphenol analogues of natural polyphenols that inhibit the 12-LO pathway in human platelets without affecting other normal functions of the cell. Using an ex vivo approach, we found one compound that selectively inhibited the 12-LO pathway, with IC50 values as low as 0.11 µM, with minimal inhibition of other lipoxygenase or cyclooxygenase pathways. More importantly, our data show that none of the compounds tested induced significant off-target effects on either the platelet's activation or its viability. In the continuous search for specific and better inhibitors targeting the regulation of inflammation, we characterized two novel inhibitors of the 12-LO pathway that could be promising for subsequent in vivo studies.
Collapse
Affiliation(s)
- Mathieu P A Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Ayyoub Selka
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Andréa A Lebel
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Jérémie A Doiron
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Audrey Isabel Chiasson
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Vanessa L Gauvin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Alexis J Matthew
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Martin J G Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Marco S Doucet
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Andrew P Joy
- Atlantic Cancer Research Institute, Moncton, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - David A Barnett
- Atlantic Cancer Research Institute, Moncton, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada.
| | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada.
| |
Collapse
|
9
|
Bruno A, Tacconelli S, Contursi A, Ballerini P, Patrignani P. Cyclooxygenases and platelet functions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:133-165. [PMID: 37236757 DOI: 10.1016/bs.apha.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cyclooxygenase (COX) isozymes, i.e., COX-1 and COX-2, are encoded by separate genes and are involved in the generation of the same products, prostaglandin (PG)G2 and PGH2 from arachidonic acid (AA) by the COX and peroxidase activities of the enzymes, respectively. PGH2 is then transformed into prostanoids in a tissue-dependent fashion due to the different expression of downstream synthases. Platelets present almost exclusively COX-1, which generates large amounts of thromboxane (TX)A2, a proaggregatory and vasoconstrictor mediator. This prostanoid plays a central role in atherothrombosis, as shown by the benefit of the antiplatelet agent low-dose aspirin, a preferential inhibitor of platelet COX-1. Recent findings have shown the relevant role played by platelets and TXA2 in developing chronic inflammation associated with several diseases, including tissue fibrosis and cancer. COX-2 is induced in response to inflammatory and mitogenic stimuli to generate PGE2 and PGI2 (prostacyclin), in inflammatory cells. However, PGI2 is constitutively expressed in vascular cells in vivo and plays a crucial role in protecting the cardiovascular systems due to its antiplatelet and vasodilator effects. Here, platelets' role in regulating COX-2 expression in cells of the inflammatory microenvironment is described. Thus, the selective inhibition of platelet COX-1-dependent TXA2 by low-dose aspirin prevents COX-2 induction in stromal cells leading to antifibrotic and antitumor effects. The biosynthesis and functions of other prostanoids, such as PGD2, and isoprostanes, are reported. In addition to aspirin, which inhibits platelet COX-1 activity, possible strategies to affect platelet functions by influencing platelet prostanoid receptors or synthases are discussed.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G.d'Annunzio" University, Chieti, Italy
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
10
|
Canyelles-Niño M, González-Lafont À, Lluch JM. Hydroperoxidation of Docosahexaenoic Acid by Human ALOX12 and pigALOX15-mini-LOX. Int J Mol Sci 2023; 24:ijms24076064. [PMID: 37047037 PMCID: PMC10094721 DOI: 10.3390/ijms24076064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Human lipoxygenase 12 (hALOX12) catalyzes the conversion of docosahexaenoic acid (DHA) into mainly 14S-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic acid (14S-H(p)DHA). This hydroperoxidation reaction is followed by an epoxidation and hydrolysis process that finally leads to maresin 1 (MaR1), a potent bioactive specialized pro-resolving mediator (SPM) in chronic inflammation resolution. By combining docking, molecular dynamics simulations, and quantum mechanics/molecular mechanics calculations, we have computed the potential energy profile of DHA hydroperoxidation in the active site of hALOX12. Our results describe the structural evolution of the molecular system at each step of this catalytic reaction pathway. Noteworthy, the required stereospecificity of the reaction leading to MaR1 is explained by the configurations adopted by DHA bound to hALOX12, along with the stereochemistry of the pentadienyl radical formed after the first step of the mechanism. In pig lipoxygenase 15 (pigALOX15-mini-LOX), our calculations suggest that 14S-H(p)DHA can be formed, but with a stereochemistry that is inadequate for MaR1 biosynthesis.
Collapse
Affiliation(s)
- Miquel Canyelles-Niño
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Arquebio SL, Carrer de Álava 51, 08005 Barcelona, Spain
| | - Àngels González-Lafont
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - José M Lluch
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Introduction to the lipid mediators special issue. Biochem Pharmacol 2023; 207:115375. [PMID: 36481345 DOI: 10.1016/j.bcp.2022.115375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|