1
|
Ma S, Lue Z, Xu G, Ma Y, Yuan W, Huang Z, Hu S, Yu L, Zhang X. Nervonic acid improves depression like behaviors and demyelination of medial prefrontal cortex in chronic restraint stress mice. Biochem Biophys Res Commun 2024; 733:150696. [PMID: 39288700 DOI: 10.1016/j.bbrc.2024.150696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Major depressive disorder (MDD) is a psychiatric disorder characterized by depressed mood, behavioral despair and anhedonia. Demyelination in specific brain regions underlies the pathology of MDD, raising the alleviating demyelination as a potential strategy for MDD therapy. Nervonic acid (NA) has the potential to improve brain demyelination, offering benefits for various neurological disorders. However, its effects on depression remain undetermined. Mice were subjected to 14 days of chronic restraint stress (CRS) to induce depression-like behaviors, and were injected with NA (70 mg/kg) daily. The administration of NA significantly improved depressive-like behaviors in CRS mice. CRS led to significant demyelination in the medial prefrontal cortex (mPFC), which were reversed by NA treatment. In addition, NA ameliorated the upregulation of inflammatory cytokines and downregulation of brain-derived neurotrophic factor, improved the alternations in axonal spines observed in the mPFC of CRS mice. Our results highlighted the potential of NA as an antidepressant, with its benefits likely attributed to its effects in alleviating demyelination in the mPFC.
Collapse
Affiliation(s)
- Shijia Ma
- Institute of Pharmacology and Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhengwei Lue
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Genghua Xu
- Institute of Pharmacology and Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yun Ma
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Wenyue Yuan
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Zhenhui Huang
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Songhui Hu
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Lushan Yu
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China; Institute of Drug Metabolism and Pharmaceutical Analysis, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiangnan Zhang
- Institute of Pharmacology and Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China; Jinhua Institute of Zhejiang University, 321299, Jinhua, China.
| |
Collapse
|
2
|
Zheng W, Xu G, Lue Z, Zhou X, Wang N, Ma Y, Yuan W, Yu L, Zhu D, Zhang X. Nervonic acid protects against oligodendrocytes injury following chronic cerebral hypoperfusion in mice. Eur J Pharmacol 2024; 982:176932. [PMID: 39182543 DOI: 10.1016/j.ejphar.2024.176932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) has been acknowledged as a potential contributor to cognitive dysfunction and brain injury, causing progressive demyelination of white matter, oligodendrocytes apoptosis and microglia activation. Nervonic acid (NA), a naturally occurring fatty acid with various pharmacological effects, has been found to alleviate neurodegeneration. Nonetheless, evidence is still lacking on whether NA can protect against neurological dysfunction resulting from CCH. To induce CCH in mice, we employed the right unilateral common carotid artery occlusion (rUCCAO) method, followed by oral administration of NA daily for 28 days after the onset of hypoperfusion. We found that NA ameliorated cognitive function, as evidenced by improved performance of NA-treated mice in both novel object recognition test and Morris water maze test. Moreover, NA mitigated demyelination and loss of oligodendrocytes in the corpus callosum and hippocampus of rUCCAO-treated mice, and prevented oligodendrocyte apoptosis. Furthermore, NA protected primary cultured murine oligodendrocytes against oxygen-glucose deprivation (OGD)-induced cell death in a concentration-dependent manner. These findings indicated that NA promotes oligodendrocyte maturation both in vivo and in vitro. Our findings suggest that NA offers protective effects against cerebral hypoperfusion, highlighting its potential as a promising treatment for CCH and related neurological disorders.
Collapse
Affiliation(s)
- Wanqing Zheng
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Genghua Xu
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhengwei Lue
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Xinyu Zhou
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Ning Wang
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Yun Ma
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Wenyue Yuan
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China; Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Danyan Zhu
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China; Institute of Drug Metabolism and Pharmaceutical Analysis, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
3
|
Pang C, Wang R, Liu K, Yuan X, Ni J, Cao Q, Chen Y, Dong PL, Han H. Serum and urine metabolomics based on UPLC-QTOF/MS reveal the effect and potential mechanism of "schisandra-evodia" herb pair in the treatment of Alzheimer's disease. Biomed Chromatogr 2024; 38:e5882. [PMID: 38649307 DOI: 10.1002/bmc.5882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The "schisandra-evodia" herb pair (S-E) is a herbal preparation to treat Alzheimer's disease (AD). This study aims to investigate the therapeutic efficacy and potential mechanism of S-E in AD rats, utilizing pharmacodynamic assessments and serum- and urine-based metabolomic analyses. Pharmacodynamic assessments included Morris water maze test, hematoxylin-eosin staining and immunohistochemistry experiments. The results of the study showed that the AD model was successful; the S-E significantly enhanced long-term memory and spatial learning in AD rats. Meanwhile, S-E notably ameliorated Aβ25-35-induced cognitive impairment, improved hippocampal neuron morphology, decreased Aβ deposition in the hippocampus and mitigated inflammatory damage. We then analyzed serum and urine samples using UPLC-MS/MS to identify potential biomarkers and metabolic pathways. Metabolomic analysis revealed alterations in 40 serum metabolites and 38 urine metabolites following S-E treatment, predominantly affecting pathways related to taurine and hypotaurine metabolism, linoleic acid metabolism, α-linolenic acid metabolism, glycerophospholipid metabolism and arachidonic acid metabolism. This study elucidates the biochemical mechanism underlying AD and the metabolic pathway influenced by S-E, laying the groundwork for future clinical applications.
Collapse
Affiliation(s)
- Chengguo Pang
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ruijiao Wang
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Kemeng Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xu Yuan
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jiating Ni
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Qingyu Cao
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuanjin Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Pei Liang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Chen P, Guo Z, Lei J, Wang Y. Pomegranate polyphenol punicalin ameliorates lipopolysaccharide-induced memory impairment, behavioral disorders, oxidative stress, and neuroinflammation via inhibition of TLR4-NF-кB pathway. Phytother Res 2024; 38:3489-3508. [PMID: 38695373 DOI: 10.1002/ptr.8219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 07/12/2024]
Abstract
Neuroinflammation may play an important role in the development of Alzheimer's disease (AD). Previous studies have reported that lipopolysaccharide (LPS)-induced neuroinflammation causes memory impairments and behavioral disorders. We investigated the potential preventive effects of punicalin (PUN), a polyphenolic component of pomegranate, on LPS-induced memory deficiency and anxiety- and depression-like behaviors, along with the underlying mechanisms. LPS-treated cultured microglial BV2 cells and BV2 cell/Neuro-2a (N2a) cell coculture system were investigated for anti-neuroinflammatory effects of PUN in vitro. The in vivo experiments involved mice administered a 4-week course of oral gavage with 1500 mg/kg/d PUN before intraperitoneal LPS (250 mg/kg daily 7 times) injections. The in vitro results demonstrated that PUN inhibited the LPS-induced inflammatory cytokine (IL-18, IL-1β, TNF-ɑ, and IL-6) production in BV2 cells and protected N2a cells from synaptic damage mediated by BV2 microglia-induced neuroinflammation. In in vivo studies, it was observed that PUN improved memory impairment and anxiety- and depression-like behaviors caused by LPS and reduced the expression of inflammatory proteins such as iNOS, COX-2, IL-1β, IL-2, IL-6, and TNF-α. Furthermore, PUN inhibited the LPS-induced production of MDA; increased the activities of CAT, SOD, and GSH-Px, and inhibited LPS-induced Aβ1-42 generation through down-regulation of APP and BACE1 expression. Moreover, PUN also suppressed the expression of TLR4, IRAK4, TRAF6, IKK-β, NF-κB, p65, and HMGB1 in LPS-treated mouse brain and cultured microglial BV-2 cells. These results suggest that PUN inhibits LPS-induced memory impairment via anti-inflammatory and anti-amylogenic mechanisms through inhibition of TLR4-NF-kB activation.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhilei Guo
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| |
Collapse
|
5
|
Xie W, Chen C, Li H, Tu Y, Zhong Y, Lin Z, Cai Z. Imidacloprid-induced lung injury in mice: Activation of the PI3K/AKT/NF-κB signaling pathway via TLR4 receptor engagement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172910. [PMID: 38701926 DOI: 10.1016/j.scitotenv.2024.172910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Significant impairment of pulmonary function has been demonstrated through long-term exposure to neonicotinoid insecticides, such as imidacloprid (IMI). However, the underlying mechanisms of lung injury induced by IMI remain unclear. In this study, a mouse model of IMI-induced pulmonary injury was established, and the toxicity and lung damage were assessed through mouse body weight, organ index, hematological parameters, and histopathological analysis of lung tissues. Furthermore, metabolomics and transcriptomics techniques were employed to explore the mechanistic aspects. Results from the toxicity assessments indicated that mouse body weight was significantly reduced by IMI, organ index was disturbed, and hematological parameters were disrupted, resulting in pulmonary injury. The mechanistic experimental results indicate that the differences in metabolites and gene expression in mouse lungs could be altered by IMI. Validation of the results through combined analysis of metabolomics and transcriptomics revealed that the mechanism by which IMI induces lung injury in mice might be associated with the activation of the TLR4 receptor, thereby activating the PI3K/AKT/NF-κB signaling pathway to induce inflammation in mouse lungs. This study provided valuable insights into the mechanisms underlying IMI-induced pulmonary damage, potentially contributing to the development of safer pest control strategies. The knowledge gained served as a robust scientific foundation for the prevention and treatment of IMI-related pulmonary injuries.
Collapse
Affiliation(s)
- Wen Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Canrong Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yuxin Tu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, Hong Kong.
| |
Collapse
|
6
|
Yang D, Yu W, Qu J, Shen Y, Yu J, Meng R, Tao Z, Chen J, Du W, Sun HZ, Zhang Y, Chen Y, Zhao M. Environmentally relevant exposure to cotinine induces neurobehavioral toxicity in zebrafish (Danio rerio): A study using neurobehavioral and metabolomic approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123826. [PMID: 38513941 DOI: 10.1016/j.envpol.2024.123826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
As an important psychoactive substance, cotinine is ubiquitous in aquatic environment and poses a threat to aquatic organisms. However, the mechanism of its adverse health impacts remains unclear. We evaluated the effects of cotinine exposure at environmentally relevant concentrations on the development and locomotor behavior of zebrafish (Danio rerio) larvae using neurotransmitters and whole endogenous metabolism. Mild developmental toxicity and significant neurobehavior disorder, such as spontaneous movement (1-1000 μg/L), 48 hpf tactile response (50, 100, and 1000 μg/L), and 144 hpf swimming speed (1, 10, 100, 500, and 1000 μg/L), were observed in zebrafish. Exposure to cotinine led to significant alterations in 11 neurotransmitters, including homogentisic acid, serotonin, glutamic acid and aspartic acid, etc. 298 metabolites were identified and two pathways - linoleic acid metabolism and taurine and hypotaurine metabolism - were delineated. In addition, amino acid neurotransmitters were significantly correlated with metabolites such as arachidonic acid as well as its derivatives, steroidal compounds, and amino acids. Serotonin demonstrates a noteworthy correlation with 31 out of 40 differentially expressed neurotransmitters, encompassing lipids, amino acids, and other compounds. These novel findings contribute to a comprehensive understanding of the ecological risks associated with cotinine contamination in surface waters.
Collapse
Affiliation(s)
- Dan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jiajia Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yuexing Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jingtong Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Ruirui Meng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Zhen Tao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jiangfei Chen
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, 650500, PR China
| | - Haitong Zhe Sun
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK; Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang, 324400, PR China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| |
Collapse
|
7
|
Yang X, Lin S, Chen Y, Chen W, Lan D, Wang Y. Efficient Enzymatic Enrichment of High-purity Nervonic Acid from Malania oleifera Seed Oil. J Oleo Sci 2024; 73:99-111. [PMID: 38171735 DOI: 10.5650/jos.ess23170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Nervonic acid (NA) is a monounsaturated fatty acid vital for brain health and is of emerging importance in various industrial applications, including therapeutics, food, and cosmetics. Given the growing demands of the food and pharmaceutical industries, there's a pressing need for high-purity NA. Previously, NA constituents in plant seed oils were chemically transformed into nervonic acid ethyl ester (NAEE) to facilitate extraction from seed oils. In this study, we present an enzymatic approach to convert NA constituents in Malania oleifera seed oil to NAEE. Combined with the utilization of the semi-preparative chromatography, we achieved a remarkable purity of 97.52% NAEE. Compared to conventional chemical preparations characterized by multiple steps, prolonged processing times, and low yields and purities, our enzymatic method stands out as a more efficient and advantageous alternative. On top of that, this innovative approach is environmentally friendly and circumvents health and safety issues associated with chemical processes.
Collapse
Affiliation(s)
- Ximei Yang
- School of Food Science and Engineering, South China University of Technology
| | - Sen Lin
- School of Food Science and Engineering, South China University of Technology
| | - Ying Chen
- School of Food Science and Engineering, South China University of Technology
| | - Wen Chen
- School of Food Science and Engineering, South China University of Technology
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Co., Ltd
| |
Collapse
|
8
|
Xi C, He L, Huang Z, Zhang J, Zou K, Guo Q, Huang C. Combined metabolomics and transcriptomics analysis of rats under neuropathic pain and pain-related depression. Front Pharmacol 2023; 14:1320419. [PMID: 38143492 PMCID: PMC10739318 DOI: 10.3389/fphar.2023.1320419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023] Open
Abstract
Neuropathic pain often leads to negative emotions, which in turn can enhance the sensation of pain. This study aimed to investigate the molecular mechanisms mediating neuropathic pain and negative emotions. Chronic constriction injury (CCI) rats were used as model animals and behavioral tests were conducted to assess pain and negative emotions. Then, the rat anterior cingulate cortex (ACC) was analyzed using UPLC-MS/MS and subsequently integrated with our previously published transcriptome data. Metabolomics analysis revealed that 68 differentially expressed metabolites (DEMs) were identified, mainly in amino acid metabolites and fatty acyls. Combined with our previously published transcriptome data, we predicted two genes that potentially exhibited associations with these metabolites, respectively Apolipoprotein L domain containing 1 (Apold1) and WAP four-disulfide core domain 1 (Wfdc1). Taken together, our results indicated that peripheral nerve injury contributing to neuropathic pain and pain-related depression may be associated with these metabolites and genes. This research provides new insights into the molecular regulatory mechanism, which could serve as a reference for the treatment of neuropathic pain and pain-related depression.
Collapse
Affiliation(s)
- Caiyun Xi
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Liqiong He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhifeng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianxi Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Kailu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Phung NV, Rong F, Xia WY, Fan Y, Li XY, Wang SA, Li FL. Nervonic acid and its sphingolipids: Biological functions and potential food applications. Crit Rev Food Sci Nutr 2023; 64:8766-8785. [PMID: 37114919 DOI: 10.1080/10408398.2023.2203753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Nervonic acid, a 24-carbon fatty acid with only one double bond at the 9th carbon (C24:1n-9), is abundant in the human brain, liver, and kidney. It not only functions in free form but also serves as a critical component of sphingolipids which participate in many biological processes such as cell membrane formation, apoptosis, and neurotransmission. Recent studies show that nervonic acid supplementation is not only beneficial to human health but also can improve the many medical conditions such as neurological diseases, cancers, diabetes, obesity, and their complications. Nervonic acid and its sphingomyelins serve as a special material for myelination in infants and remyelination patients with multiple sclerosis. Besides, the administration of nervonic acid is reported to reduce motor disorder in mice with Parkinson's disease and limit weight gain. Perturbations of nervonic acid and its sphingolipids might lead to the pathogenesis of many diseases and understanding these mechanisms is critical for investigating potential therapeutic approaches for such diseases. However, available studies about this aspect are limited. In this review, relevant findings about functional mechanisms of nervonic acid have been comprehensively and systematically described, focusing on four interconnected functions: cellular structure, signaling, anti-inflammation, lipid mobilization, and their related diseases.
Collapse
Affiliation(s)
- Nghi Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wan Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xian Yu Li
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Shi An Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| | - Fu Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| |
Collapse
|