1
|
Hurtado KA, Schnellmann RG. Mitophagy regulates mitochondrial number following pharmacological induction of mitochondrial biogenesis in renal proximal tubule cells. Front Pharmacol 2024; 15:1344075. [PMID: 38375036 PMCID: PMC10875001 DOI: 10.3389/fphar.2024.1344075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/21/2024] Open
Abstract
Background: Mitochondrial biogenesis (MB) induction through the activation of the 5-Hydroxytriptamine (5-HT) 1F receptor (HTR1F) is a promising mechanism for the treatment of diseases characterized by mitochondrial dysfunction, such as acute kidney injury (AKI). While several studies report pharmacological activation of MB in the proximal tubule, it is unclear how the proximal tubule regulates itself once the pharmacological activation is removed. Mitophagy is the process of selective mitochondria degradation. We hypothesize that mitophagy decreases mitochondrial number after pharmacological stimulation and restore mitochondrial homeostasis. Methods: Renal proximal tubules were treated at time 0hr with LY344864 or vehicle for 24 h and then removed. LY344864, a selective HTR1F agonist, induces MB in renal proximal tubules as previously reported (Gibbs et al., Am J Physiol Renal Physiol, 2018, 314(2), F260-F268). Vehicle and pharmacological reagents were added at the 24 h time point. Electron microscopy was used to assess mitochondrial morphology, number, and autolysosomes. Seahorse Bioscience XF-96 extracellular flux analyzer was used to measure maximal mitochondrial oxygen consumption rates (FCCP-OCR), a functional marker of MB. Results: LY344864 treatment increased FCCP-OCR, phosphorylation of protein kinase B (AKT), peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α), and mitochondrial number after 24 h. These endpoints decreased to baseline 24 h after LY344864 removal. Treatment with ROC-325, an autophagy inhibitor, increased Sequestosome-1 (SQSTM1/P62) and microtubule-associated protein-1 light chain 3 (LC3B) after 24 h of treatment. Also, ROC-325 treatment sustained the elevated mitochondrial number after LY344864 pre-treatment and removal. Conclusion: These data revealed that inhibition of autophagy extends elevated mitochondrial number and function by preventing the lysosomal degradation of mitochondria after the removal of LY344864.
Collapse
Affiliation(s)
- Kevin A. Hurtado
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Rick G. Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
2
|
Sun X, Chen S, Zhao Y, Wu T, Zhao Z, Luo W, Han J, Fang Z, Ye B, Cao G, Huang S, Liang G. OTUD6A in tubular epithelial cells mediates angiotensin II-induced kidney injury by targeting STAT3. Am J Physiol Cell Physiol 2024; 326:C400-C413. [PMID: 38105755 DOI: 10.1152/ajpcell.00394.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Kidney fibrosis is a prominent pathological feature of hypertensive kidney diseases (HKD). Recent studies have highlighted the role of ubiquitinating/deubiquitinating protein modification in kidney pathophysiology. Ovarian tumor domain-containing protein 6 A (OTUD6A) is a deubiquitinating enzyme involved in tumor progression. However, its role in kidney pathophysiology remains elusive. We aimed to investigate the role and underlying mechanism of OTUD6A during kidney fibrosis in HKD. The results revealed higher OTUD6A expression in kidney tissues of nephropathy patients and mice with chronic angiotensin II (Ang II) administration than that from the control ones. OTUD6A was mainly located in tubular epithelial cells. Moreover, OTUD6A deficiency significantly protected mice against Ang II-induced kidney dysfunction and fibrosis. Also, knocking OTUD6A down suppressed Ang II-induced fibrosis in cultured tubular epithelial cells, whereas overexpression of OTUD6A enhanced fibrogenic responses. Mechanistically, OTUD6A bounded to signal transducer and activator of transcription 3 (STAT3) and removed K63-linked-ubiquitin chains to promote STAT3 phosphorylation at tyrosine 705 position and nuclear translocation, which then induced profibrotic gene transcription in epithelial cells. These studies identified STAT3 as a direct substrate of OTUD6A and highlighted the pivotal role of OTUD6A in Ang II-induced kidney injury, indicating OTUD6A as a potential therapeutic target for HKD.NEW & NOTEWORTHY Ovarian tumor domain-containing protein 6 A (OTUD6A) knockout mice are protected against angiotensin II-induced kidney dysfunction and fibrosis. OTUD6A promotes pathological kidney remodeling and dysfunction by deubiquitinating signal transducer and activator of transcription 3 (STAT3). OTUD6A binds to and removes K63-linked-ubiquitin chains of STAT3 to promote its phosphorylation and activation, and subsequently enhances kidney fibrosis.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, People's Republic of China
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Periodontics and Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shuhong Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ying Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tong Wu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zheyu Zhao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zimin Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Bozhi Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Periodontics and Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Guang Liang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, People's Republic of China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
3
|
Hurtado KA, Janda J, Schnellmann RG. Lasmiditan restores mitochondrial quality control mechanisms and accelerates renal recovery after ischemia-reperfusion injury. Biochem Pharmacol 2023; 218:115855. [PMID: 37866804 PMCID: PMC10872401 DOI: 10.1016/j.bcp.2023.115855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Mitochondrial dysfunction is a well-established result of acute kidney injury (AKI). Previously, we identified that 5-hydroxytryptamine 1F (5-HT1F) receptor agonism with lasmiditan induces mitochondrial biogenesis (MB) and improves renal vasculature and function in an AKI mouse model. We hypothesize that lasmiditan also modulates mitochondrial dynamics and mitophagy in a mouse model of AKI. METHODS Male mice were subjected to renal ischemia/reperfusion (I/R) and treated daily with lasmiditan (0.3 mg/kg) or vehicle beginning 24 h after injury for 3 or 6d. Serum creatinine was measured to estimate glomerular filtration. Electron microscopy was used to assess mitochondrial morphology and mitophagy. Mitochondrial-related protein were confirmed with immunoblotting. Mitochondrial function was assessed with ATP measurements. RESULTS Lasmiditan treatment improved mitochondrial and kidney recovery as early as 3d post-AKI, as evidenced by increased ATP, and decreased serum creatinine, respectively. Electron micrographs of renal cortices revealed that lasmiditan also decreased mitochondrial damage and increased mitochondrial area and size by 6d after I/R injury. Additionally, lasmiditan treatment increased mitolysosomes by 3d, indicating induction of mitophagy. Phosphorylation of mitophagy-related proteins were also increased in the renal cortices of lasmiditan-treated AKI mice 3d after I/R injury, whereas fusion-related proteins were increased at 6d after I/R injury. CONCLUSION These data reveal that lasmiditan accelerates renal recovery, restores normal mitochondrial membrane and cristae morphology, decreases excessive mitochondrial fission, and accelerates mitophagy post-AKI in a time-dependent manner, establishing mitochondrial function and recovery from AKI.
Collapse
Affiliation(s)
- Kevin A Hurtado
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA; Southern Arizona VA Health Care System, Tucson, AZ, USA; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|