1
|
Furukawa S, Kawaguchi K, Chikama K, Yamada R, Kamatari YO, Lim LW, Koyama H, Inoshima Y, Ikemoto MJ, Yoshida S, Hirata Y, Furuta K, Takemori H. Simple methods for measuring milk exosomes using fluorescent compound GIF-2250/2276. Biochem Biophys Res Commun 2024; 696:149505. [PMID: 38219490 DOI: 10.1016/j.bbrc.2024.149505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Exosomes are small extracellular vesicles (EVs) found in culture supernatants, blood, and breast milk. The size of these nanocomplexes limits the methods of EV analyses. In this study, nitrobenzoxadiazole (NBD), a fluorophore, conjugated endosome-lysosome imager, GIF-2250 and its derivative, GIF-2276, were evaluated for exosome analyses. A correlation was established between GIF-2250 intensity and protein maker levels in bovine milk exosomes. We found that high-temperature sterilization milk may not contain intact exosomes. For precise analysis, we synthesized GIF-2276, which allows for the covalent attachment of NBD to the Lys residue of exosome proteins, and labeled milk exosomes were separated using a gel filtration system. GIF-2276 showed chromatographic peaks of milk exosomes containing >3 ng protein. The area (quantity) and retention time (size) of the exosome peaks were correlated to biological activity (NO synthesis suppression in RAW264.7 murine macrophages). Heat denaturation of purified milk-derived exosomes disrupted these indicators. Proteome analyses revealed GIF-2276-labeled immunomodulators, such as butyrophilin subfamily 1 member A1 and polymeric immunoglobulin receptor. The immunogenicity and quantity of these factors decreased by heat denaturation. When milk exosomes were purified from market-sourced milk we found that raw and low-temperature sterilization milk samples, contained exosomes (none in high-temperature sterilization milk). These results were also supported by transmission electron microscopy analyses. We also found that GIF-2276 could monitor exosome transportation into HEK293 cells. These results suggested that GIF-2250/2276 may be helpful to evaluate milk exosomes.
Collapse
Affiliation(s)
- Saho Furukawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kyoka Kawaguchi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kotomi Chikama
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Ryohei Yamada
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuji O Kamatari
- Life Science Research Center, Gifu University, Gifu, Gifu, 501-1193, Japan; The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Lee Wah Lim
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiroko Koyama
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yasuo Inoshima
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Mitsushi J Ikemoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan; Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, 305-8574, Japan
| | - Saishi Yoshida
- Seki Gyunyu Co. Ltd, 41, Kannonmae, Seki, Gifu, 501-3835, Japan
| | - Yoko Hirata
- Life Science Research Center, Gifu University, Gifu, Gifu, 501-1193, Japan
| | - Kyoji Furuta
- GIFU EXOSOME Co. Ltd, 1-11-9, Yabuta-minani, Gifu, 500-8384, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; GIFU EXOSOME Co. Ltd, 1-11-9, Yabuta-minani, Gifu, 500-8384, Japan.
| |
Collapse
|
2
|
Zhang Y, Xie J. Ferroptosis-related exosomal non-coding RNAs: promising targets in pathogenesis and treatment of non-malignant diseases. Front Cell Dev Biol 2024; 12:1344060. [PMID: 38385027 PMCID: PMC10879574 DOI: 10.3389/fcell.2024.1344060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/10/2024] [Indexed: 02/23/2024] Open
Abstract
Ferroptosis, an iron-dependent form of programmed cell death, introduces a novel perspective on cellular demise. This study investigates the regulatory network of exosomal non-coding RNAs (ncRNAs), including miRNAs, circRNAs, and lncRNAs, in ferroptosis modulation. The primary goal is to examine the pathological roles of ferroptosis-related exosomal ncRNAs, particularly in ischemic reperfusion injuries. The research reveals intricate molecular interactions governing the regulatory interplay between exosomal ncRNAs and ferroptosis, elucidating their diverse roles in different non-malignant pathological contexts. Attention is given to their impact on diseases, including cardiac, cerebral, liver, and kidney ischemic injuries, as well as lung, wound, and neuronal injuries. Beyond theoretical exploration, the study provides insights into potential therapeutic applications, emphasizing the significance of mesenchymal stem cells (MSCs)-derived exosomes. Findings underscore the pivotal role of MSC-derived exosomal ncRNAs in modulating cellular responses related to ferroptosis regulation, introducing a cutting-edge dimension. This recognition emphasizes the importance of MSC-derived exosomes as crucial mediators with broad therapeutic implications. Insights unveil promising avenues for targeted interventions, capitalizing on the diverse roles of exosomal ncRNAs, providing a comprehensive foundation for future therapeutic strategies.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Science, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| | - Jun Xie
- School of Life Science, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| |
Collapse
|
3
|
Wang C, Li W, Shao L, Zhou A, Zhao M, Li P, Zhang Z, Wu J. Both extracellular vesicles from helicobacter pylori-infected cells and helicobacter pylori outer membrane vesicles are involved in gastric/extragastric diseases. Eur J Med Res 2023; 28:484. [PMID: 37932800 PMCID: PMC10626716 DOI: 10.1186/s40001-023-01458-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Bacterial-derived extracellular vesicles (EVs) have emerged as crucial mediators in the cross-talk between hosts and pathogens, playing a significant role in infectious diseases and cancers. Among these pathogens, Helicobacter pylori (H. pylori) is a particularly important bacterium implicated in various gastrointestinal disorders, gastric cancers, and systemic illnesses. H. pylori achieves these effects by stimulating host cells to secrete EVs and generating internal outer membrane vesicles (OMVs). The EVs derived from H. pylori-infected host cells modulate inflammatory signaling pathways, thereby affecting cell proliferation, apoptosis, cytokine release, immune cell modification, and endothelial dysfunction, as well as disrupting cellular junctional structures and inducing cytoskeletal reorganization. In addition, OMVs isolated from H. pylori play a pivotal role in shaping subsequent immunopathological responses. These vesicles incite both inflammatory and immunosuppressive reactions within the host environment, facilitating pathogen evasion of host defenses and invasion of host cells. Despite this growing understanding, research involving H. pylori-derived EVs remains in its early stages across different domains. In this comprehensive review, we present recent advancements elucidating the contributions of EV components, such as non-coding RNAs (ncRNAs) and proteins, to the pathogenesis of gastric and extragastric diseases. Furthermore, we highlight their potential utility as biomarkers, therapeutic targets, and vehicles for targeted delivery.
Collapse
Affiliation(s)
- Chengyao Wang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Wenkun Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Linlin Shao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Anni Zhou
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Mengran Zhao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Peng Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Zheng Zhang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| | - Jing Wu
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| |
Collapse
|