1
|
Kosgei GK, Fernando PUAI. Recent Advances in Fluorescent Based Chemical Probes for the Detection of Perchlorate Ions. Crit Rev Anal Chem 2025:1-25. [PMID: 39783983 DOI: 10.1080/10408347.2024.2447299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
This review highlights recent advancements and challenges in fluorescence-based chemical sensors for selective and sensitive detection of perchlorate, a persistent environmental pollutant and global concern due to its health and safety implications. Perchlorate is a highly persistent inorganic pollutant found in drinking water, soil, and air, with known endocrine-disruptive properties due to its interference with iodide uptake by the thyroid gland. Human exposure mainly occurs through contaminated water and food. Additionally, perchlorates are prevalent in improvised explosives, causing numerous civilian casualties, making their detection important in a worldwide aspect. Fluorescence-based chemical sensors provide a valuable tool for the selective detection of perchlorate ions due to their simplicity and applicability across various fields, including biology, pharmacology, military, and environmental science. This review article overviews perchlorate chemistry, occurrence, and remediation strategies, compares regulatory limits, and examines fluorescence-based detection mechanisms. It systematically summarizes recent advancements in designing at least a dozen fluorescence-based chemical materials for detecting perchlorate in the environment over the past decade. Key focus areas include the design and molecular architecture of synthetic chemical chromophores for perchlorate sensing and the photochemistry mechanisms driving their effectiveness. The main findings indicate that there has been significant progress in the development of reliable and robust fluorescence-based sensors with higher selectivity and sensitivity for perchlorate detection. However, several challenges remain, such as improving detection limits and sensor stability. The review outlines potential future research directions, emphasizing the need for further innovation in sensor design and development. It aims to enhance understanding and spur advances that could create more efficient and robust chemical scaffolds for perchlorate sensing. By addressing current limitations and identifying opportunities for improvement, the review provides a comprehensive resource for researchers working to develop better detection methods for this significant environmental pollutant.
Collapse
Affiliation(s)
- Gilbert K Kosgei
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA
| | | |
Collapse
|
2
|
Zhang L, Peng Y, Song Y, Zhang Y, Qin Q, Ying M, Bi Y, Yin P. Associations of Urinary Perchlorate, Nitrate, and Thiocyanate with Female Infertility and Mediation of Obesity: Insights from NHANES 2013-2018. TOXICS 2024; 13:15. [PMID: 39853015 PMCID: PMC11769535 DOI: 10.3390/toxics13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
Classified as endocrine disrupting chemicals (EDCs), perchlorate, nitrate, and thiocyanate have been implicated with obesity and reproductive disorders. This study used three cycles of the National Health and Nutrition Examination Survey (NHANES 2013-2018); 813 women of reproductive age were finally included. We used multivariable logistic regression to analyze the associations between the three anions and obesity and infertility. Subsequently, we performed mediation analysis to explore the potential mediating effect of obesity on infertility in association with anion exposure. Increased concentrations of perchlorate and nitrate showed inverse correlations with the risk of obesity (OR = 0.73, 95% CI: 0.55-0.96; OR = 0.59, 95% CI: 0.40-0.87). Perchlorate was negatively associated with infertility (OR = 0.68, 95% CI: 0.51-0.91), and obesity was a mediator in association between perchlorate and infertility. These findings suggest that women of reproductive age may be protected from obesity and infertility by exposure to perchlorate and nitrate, with obesity acting as a moderating factor in the observed association. This study provides a valuable understanding of the complex links between environmental contaminants, obesity, and reproductive health, and identifies potential strategies to reduce the risk of infertility and improve women's health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (L.Z.); (Y.P.); (Y.S.); (Y.Z.); (Q.Q.); (M.Y.); (Y.B.)
| |
Collapse
|
3
|
Paramasivam A, Murugan R, Jeraud M, Dakkumadugula A, Periyasamy R, Arjunan S. Additives in Processed Foods as a Potential Source of Endocrine-Disrupting Chemicals: A Review. J Xenobiot 2024; 14:1697-1710. [PMID: 39584955 PMCID: PMC11587131 DOI: 10.3390/jox14040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Processed foods, accounting for most consumable food categories today, contain considerable amounts of food additives. Food additives are substances added to food products to improve taste, consistency, appearance, or shelf life. Various food additives, such as phthalates, bisphenol A, tartrazine, erythrosine, artificial sweeteners, and parabens, have been identified as potential sources of endocrine-disrupting chemicals (EDCs) in processed foods. EDCs are substances that frequently interfere with the regular functioning of the endocrine system, creating an unusual environment in the biological system, which leads to adverse health effects such as the disruption of hormone synthesis, receptor binding, and signal transduction pathways, as well as energy metabolic homeostatic disorders which potentially increasing the risk of obesity, type-2 diabetes, cardiometabolic diseases and may also trigger allergic reactions. Consequently, they can also impact mammary gland development, and reproductive function, further leading to developmental abnormalities. This review aims to insights into the various food additives that act as potential endocrine-disrupting chemicals (EDCs) and to describe their applications in the food industry, as well as the failure of hormonal homeostatic mechanisms, which eventually result in hazardous health effects. It also outlines strategies to reduce the use of food additives and suggests alternative additives with minimal or no endocrine-disrupting properties, highlighting their importance for maintaining human health.
Collapse
Affiliation(s)
- Anand Paramasivam
- Department of Physiology, RVS Dental College and Hospital (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032, Tamil Nadu, India), Kumaran Kottam Campus, Kannampalayan, Coimbatore 641402, Tamil Nadu, India
| | - Rajadurai Murugan
- Department of Food Technology, Faculty of Life and Allied Health Sciences, M S Ramaiah University of Applied Sciences, Bangalore 560054, Karnataka, India
| | - Mathew Jeraud
- Department of Physiology, Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia;
| | - Angel Dakkumadugula
- Clinical Division, Indian Council of Medical Research-National Institute of Nutrition, Hyderabad 500007, Telangana, India;
| | - Ravisankar Periyasamy
- Department of Anatomy, SRM Dental College, SRM Institute of Science and Technology, Bharathi Salai, Ramapuram Campus, Chennai 600089, Tamil Nadu, India;
| | - Selvam Arjunan
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA;
| |
Collapse
|
4
|
Li Y, Wang H, Zhang M, Wang B, Zhu G, Zhao X, Wu F. Risk assessment of dietary perchlorate exposure in typical areas of fireworks manufacturing in China using a perchlorate intake model. CHEMOSPHERE 2024; 366:143511. [PMID: 39389379 DOI: 10.1016/j.chemosphere.2024.143511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Perchlorate can disrupt the production of thyroid hormones, impact metabolism, and even affect the cognitive development of infants and toddlers. Typical areas of fireworks manufacturing might face severe perchlorate pollution due to perchlorate is an important raw material. But related study has not been reported. We assess the risk caused by perchlorate and identify the critical exposure pathways for different age/gender groups in typical area of fireworks manufacturing. Liuyang city, a major fireworks manufacturing center in China, was selected as study region. Perchlorate concentrations were measured in 230 local food samples from Liuyang using LC/MS/MS. Risks for different age/gender groups were estimated using a perchlorate intake model. The detection rate of perchlorate in samples from all eight food groups, including vegetables, fruits, meat, seafood, egg, cereal, beans, and drinking water was 100%, and the perchlorate concentrations were higher than those reported in the United States, Canada, South Korea, Kuwait, and other regions of China. Liuyang residents are currently facing an extremely high perchlorate dietary exposure risk, with the mean Estimated Daily Intakes (EDIs) approximately 6-49 times higher than US EPA's recommended reference dose (RfD, 0.7 μg/kg bw/day), and 14-115 times higher than the tolerable daily intake (TDI, 0.3 μg/kg bw/day) established by EFSA. Breast milk and drinking water are identified as the primary exposure pathways for infants and toddlers under the age of two, contributing 44-86% and 13-41% to their total exposure, respectively. For individuals > two years, vegetable consumption (constituting 54-66% of exposures) and ingestion of drinking water (constituting 23-32% of exposures) represent the chief exposure routes. The Hazard Quotient (HQ) values for Liuyang City residents all exceed 2, indicating an extremely high non-carcinogenic risk associated with perchlorate. Scientific and systematic perchlorate pollution control measures should be taken by local government.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Minghui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
5
|
Bennett AJ, Foroughi LM, Matzger AJ. Perchlorate-Free Energetic Oxidizers Enabled by Ionic Cocrystallization. J Am Chem Soc 2024; 146:1771-1775. [PMID: 38181408 DOI: 10.1021/jacs.3c12023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The search for a suitable replacement for the ubiquitous oxidizer ammonium perchlorate (AP) is a top priority to enable more sustainable solid rocket motors. The oxidizing salts ammonium nitrate (AN) and ammonium dinitramide (ADN) are regarded as potential green replacements for AP, but suffer from a plethora of handling and processing issues including poor stability and a needle-like crystal morphology which inhibits dense packing; these prevent their widespread use. In the present work, ionic cocrystallization is leveraged to produce the first cocrystals of these oxidizing salts with an energetic coformer and the first such cocrystals to maintain a positive oxygen balance. The azole-based energetic molecule 5,5'-dinitro-2H,2H'-3,3″-bi-1,2,4-triazole (DNBT) is successfully cocrystallized with AN to yield the cocrystal 2AN:DNBT. Differential scanning calorimetry data confirms that AN, which in its pure form suffers from a problematic solid-state phase transition, is stabilized in the cocrystal. Application of this cocrystallization strategy to ADN produces 2ADN:DNBT, which has the highest oxygen balance of any organic cocrystal.
Collapse
Affiliation(s)
- Andrew J Bennett
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Leila M Foroughi
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Adam J Matzger
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Lee J, Park JW, Kim HI, Park CB, Cho SH. Thyroid-gonadal hormonal interplay in zebrafish exposed to sodium perchlorate: Implications for reproductive health. CHEMOSPHERE 2024; 346:140662. [PMID: 37949182 DOI: 10.1016/j.chemosphere.2023.140662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Perchlorate, a widespread environmental contaminant originating from various industrial applications, agricultural practices, and natural sources, poses potential risks to ecosystems and human health. While previous studies have highlighted its influence on the thyroid endocrine system and its impact on gonadal maturation, reproduction, and sex hormone synthesis, the specific interplay between thyroid and steroid hormones, in this context, remains largely unexplored. Therefore, this study was undertaken to investigate the adverse effects and underlying mechanisms triggered by exposure to sodium perchlorate (SP) on reproductive endocrine activity in zebrafish. For 21 d, the fish were exposed to test SP concentrations (0, 3, 30, 300 mg/L), which were determined based on the exposure concentrations that induced various toxic effects in the fish, considering naturally occurring concentrations. Exposure to SP, except at 3 mg/L in males, significantly decreased the production of thyroid hormone (TH) in both female and male zebrafish. Moreover, gonadal steroid levels were markedly reduced in both sexes. The expression of hepatic vitellogenin (VTG) mRNA in female zebrafish was significantly decreased, whereas aromatase activity in male zebrafish was significantly elevated in the SP exposure groups. The reduced levels of THs and gonadal steroid hormones were strongly correlated. Abnormal responses to SP exposure led to reduced reproductive success in the 300 mg/L SP exposure group. These findings indicate that prolonged and continuous exposure to a specific concentration of SP may lead to long-term reproductive problems in zebrafish, primarily through hormonal imbalances and suppression of hepatic VTG mRNA expression.
Collapse
Affiliation(s)
- Jangjae Lee
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - June-Woo Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang-Beom Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| |
Collapse
|
7
|
Li Y, Li S, Ren J, Li J, Zhao Y, Chen D, Wu Y. Occurrence, spatial distribution, and risk assessment of perchlorate in tea from typical regions in China. Curr Res Food Sci 2023; 7:100606. [PMID: 37822319 PMCID: PMC10563047 DOI: 10.1016/j.crfs.2023.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Perchlorate is a kind of persistent pollutant which occurs widely in the environment. The news of "high content of perchlorate detected in tea exported from China to Europe" has aroused public concerns on perchlorate in tea. However, limited data on its occurrence in tea and health risks for the tea consumers are available. To this end, this study explored the occurrence and spatial distribution of perchlorate based on 747 tea samples collected from the 13 major tea producing regions in China. Perchlorate was detected in 100% of tea samples. The average concentration of perchlorate was 163 μg/kg with the range from 1.2 μg/kg to 3132 μg/kg. From the perspective of spatial distribution, a remarkable difference was observed for perchlorate concentrations in tea samples between different regions (p < 0.0001), and the average concentration of perchlorate from the central China (409 μg/kg) was higher than that from the eastern (90.7 μg/kg) and western (140 μg/kg) regions. However, this study cannot obtain the difference of perchlorate concentrations between different tea categories. Furthermore, a human exposure assessment of perchlorate intake through tea consumption was performed by deterministic and probabilistic risk assessment. The average chronic daily intake (CDI) to perchlorate of Chinese tea consumers was 0.0183 μg/kg bw/day, however, CDI for high tea consumers (99% and 99.9%) was 0.1514-0.4675 μg/kg bw/day. The health risk assessment conducted with a hazard quotient showed that perchlorate exposure through tea consumption was under a safety threshold. Nevertheless, if other dietary exposure pathways were considered, health risks to perchlorate for high tea consumers would be paid attention to.
Collapse
Affiliation(s)
- Yan Li
- Department of Sanitary Technology, West China School of Public Health, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Shaohua Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
- Department of Rehabilitation, Wuyi University, Wuyishan, 354300, China
| | - Jun Ren
- Wuhai Inspection and Testing Center, Wuhai, 016000, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Yongning Wu
- Department of Sanitary Technology, West China School of Public Health, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| |
Collapse
|
8
|
Torres-Rojas F, Muñoz D, Pía Canales C, Hevia SA, Leyton F, Veloso N, Isaacs M, Vargas IT. Synergistic effect of electrotrophic perchlorate reducing microorganisms and chemically modified electrodes for enhancing bioelectrochemical perchlorate removal. ENVIRONMENTAL RESEARCH 2023; 233:116442. [PMID: 37343755 DOI: 10.1016/j.envres.2023.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Perchlorate has been described as an emerging pollutant that compromises water sources and human health. In this study, a new electrotrophic perchlorate reducing microorganism (EPRM) isolated from the Atacama Desert, Dechloromonas sp. CS-1, was evaluated for perchlorate removal in water in a bioelectrochemical reactor (BER) with a chemically modified electrode. BERs were operated for 17 days under batch mode conditions with an applied potential of -500 mV vs. Ag/AgCl. Surface analysis (i.e., SEM, XPS, FT-IR, RAMAN spectroscopy) on the modified electrode demonstrated heterogeneous transformation of the carbon fibers with the incorporation of nitrogen functional groups and the oxidation of the carbonaceous material. The BERs with the modified electrode and the presence of the EAM reached high cathodic efficiency (90.79 ± 9.157%) and removal rate (0.34 ± 0.007 mol m-3-day) compared with both control conditions. The observed catalytic enhancement of CS-1 was confirmed by a reduction in the charge transfer resistance obtained by electrochemical impedance spectroscopy (EIS). Finally, an electrochemical kinetic study revealed an eight-electron perchlorate bioreduction reaction at -638.33 ± 24.132 mV vs. Ag/AgCl. Therefore, our results show the synergistic effect of EPRM and chemically modified electrodes on perchlorate removal in a BER.
Collapse
Affiliation(s)
- Felipe Torres-Rojas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| | - Diana Muñoz
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile
| | - Camila Pía Canales
- Science Institute & Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, VR-III, Hjardarhaga 2, 107, Reykjavík, Iceland
| | - Samuel A Hevia
- Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia Universidad Católica de Chile CIEN-UC, Chile; Instituto de Física, Pontificia Universidad Católica de, Chile
| | - Felipe Leyton
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia. Pontificia Universidad Católica de, Chile
| | - Nicolás Veloso
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia. Pontificia Universidad Católica de, Chile
| | - Mauricio Isaacs
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia. Pontificia Universidad Católica de, Chile; Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia Universidad Católica de Chile CIEN-UC, Chile
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile.
| |
Collapse
|
9
|
Saedi Y, Batista JR, Britto R, Grady D. Impacts of co-contaminants and dilution on perchlorate biodegradation using various carbon sources. Biodegradation 2023; 34:301-323. [PMID: 36598629 DOI: 10.1007/s10532-022-10013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
This research investigates the biodegradation of perchlorate in the presence of the co-contaminants nitrate and chlorate using soluble and slow-release carbon sources. In addition, the impact of bio-augmentation and dilution, which results in lower total dissolved salts (TDS) and contaminant levels, is examined. Laboratory microcosms were conducted using actual groundwater and soils from a contaminated aquifer. The results revealed that both soluble and slow-release carbon sources support biodegradation of contaminants in the sequence nitrate > chlorate > perchlorate. Degradation rates, including and excluding lag times, revealed that the overall impact of the presence of co-contaminants depends on degradation kinetics and the relative concentrations of the contaminants. When the lag time caused by the presence of the co-contaminants is considered, the degradation rates for chlorate and perchlorate were two to three times slower. The results also show that dilution causes lower initial contaminant concentrations, and consequently, slower degradation rates, which is not desirable. On the other hand, the dilution resulting from the injection of amendments to support remediation promotes desirably lower salinity levels. However, the salinity associated with the presence of sulfate does not inhibit biodegradation. The naturally occurring bacteria were able to support the degradation of all contaminants. Bio-augmentation was effective only in diluted microcosms. Proteobacteria and Firmicutes were the dominant phyla identified in the microcosms.
Collapse
Affiliation(s)
- Yasaman Saedi
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV, 89154-4015, USA
| | - Jacimaria R Batista
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV, 89154-4015, USA.
| | - Ronnie Britto
- Tetra Tech Inc, 720 Coleherne Road, Collierville, TN, 38017, USA
| | - Dana Grady
- Tetra Tech Inc, 720 Coleherne Road, Collierville, TN, 38017, USA
| |
Collapse
|
10
|
Lumchee M, Yue M, Laurie J, Morton A. Therapeutic plasma exchange for Graves' disease in pregnancy. Obstet Med 2023; 16:126-129. [PMID: 37441666 PMCID: PMC10334034 DOI: 10.1177/1753495x211031328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 06/04/2024] Open
Abstract
Graves' disease in pregnancy may be associated with maternal, fetal and neonatal complications, which are proportionate to the severity of hyperthyroidism. Optimal management is detailed preconception counselling, achievement of an euthyroid state prior to conception, and close monitoring of thyroid function and thyroid-stimulating antibodies together with judicious use of anti-thyroid medications during pregnancy. A case of Graves' disease in pregnancy, complicated by pancytopenia, with a deterioration in thyroid function following cessation of thionamide therapy is described here. Therapeutic plasma exchange was subsequently used to achieve rapid control prior to thyroidectomy. Therapeutic plasma exchange is an effective treatment for hyperthyroidism where thionamides are ineffective or contraindicated, as a bridge to definitive management.
Collapse
Affiliation(s)
- Matthew Lumchee
- Department of Obstetric Medicine, Mater Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Mimi Yue
- Faculty of Medicine, University of Queensland, Brisbane, Australia
- Department of Haematology, Mater Hospital, Brisbane, Queensland, Australia
| | - Josephine Laurie
- Department of Obstetric Medicine, Mater Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Adam Morton
- Department of Obstetric Medicine, Mater Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
11
|
Stoker TE, Wang J, Murr AS, Bailey JR, Buckalew AR. High-Throughput Screening of ToxCast PFAS Chemical Library for Potential Inhibitors of the Human Sodium Iodide Symporter. Chem Res Toxicol 2023; 36:380-389. [PMID: 36821091 DOI: 10.1021/acs.chemrestox.2c00339] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Over the past decade, there has been increased concern for environmental chemicals that can target various sites within the hypothalamic-pituitary-thyroid axis to potentially disrupt thyroid synthesis, transport, metabolism, and/or function. One well-known thyroid target in both humans and wildlife is the sodium iodide symporter (NIS) that regulates iodide uptake into the thyroid gland, the first step of thyroid hormone synthesis. Our laboratory previously developed and validated a radioactive iodide uptake (RAIU) high-throughput assay in a stably transduced human NIS cell line (hNIS-HEK293T-EPA) to identify chemicals with potential for NIS inhibition. So far, we have tested over 2000 chemicals (US EPA's ToxCast chemical libraries PI_v2, PII, and e1K) and discovered a subset of chemicals that significantly inhibit iodide uptake in the hNIS assay. Here, we utilized this screening assay to test a set of 149 unique per- and polyfluoroalkyl substances (PFAS) (ToxCast PFAS library) for potential NIS inhibition. For this evaluation, the 149 blinded samples were screened in a tiered approach, first in an initial single-concentration (≤100 μM) RAIU assay and subsequent evaluation of the chemicals that produced ≥20% inhibition using multiconcentration (MC) response (0.001-100 μM) testing in parallel RAIU and cell viability assays. Of this set, 38 of the PFAS chemicals inhibited iodide uptake ≥20% in the MC testing with 25 displaying inhibition ≥50%. To prioritize the most potent PFAS NIS inhibitors in this set, chemicals were ranked based on outcomes of both iodide uptake and cytotoxicity and normalized to perchlorate, a known positive control. Consistent with previous findings, PFOS and PFHxS were again found to be potent NIS inhibitors, yet significant inhibition was also observed for several other screened PFAS chemicals. Although further studies are clearly warranted, this initial screening effort identifies NIS as a molecular target for potential thyroid disruption by this persistent and structurally diverse class of chemicals.
Collapse
Affiliation(s)
- Tammy E Stoker
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Jun Wang
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
- Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, Tennessee 37831, United States
| | - Ashley S Murr
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Jarod R Bailey
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
- Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, Tennessee 37831, United States
| | - Angela R Buckalew
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
12
|
Yue B, Ning S, Miao H, Fang C, Li J, Zhang L, Bao Y, Fan S, Zhao Y, Wu Y. Human exposure to a mixture of endocrine disruptors and serum levels of thyroid hormones: A cross-sectional study. J Environ Sci (China) 2023; 125:641-649. [PMID: 36375946 DOI: 10.1016/j.jes.2022.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 06/16/2023]
Abstract
Exposure to endocrine disruptors (EDCs) could disrupt thyroid hormone homeostasis. However, human epidemiological studies reported inconsistent observations, and scarce information on the effect of a mixture of chemicals. The aim of the present study was to examine the associations of multiple chemicals with thyroid hormones among adults from China. We measured serum levels of thyroid hormones and urinary levels of 11 EDCs, including six phthalate metabolites, bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), perchlorate, and thiocyanate among 177 healthy adults without occupational exposure. Associations of multiple urinary analytes with serum thyroid hormones were examined by performing general linear regression analysis and bayesian kernal machine regression analysis. These EDCs were detected in almost all samples. After adjusting for various covariates, we observed only BPF significantly associated with total thyroxin (TT4) (β=-0.27, 95% confidence interval (CI) [-0.41, -0.14]), total triiodothyronine (TT3) (β=-0.02 95% CI [-0.03, -0.01]), free T4 (fT4) (β=-0.02, 95% CI [-0.03, -0.01]), and free T3 (fT3) (β=-0.04, 95% CI [-0.07, -0.01]), and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) and monoethyl phthalate (MEP) positively associated with TT4 (β=0.24, 95% CI [0.01, 0.48]) and fT4 (β=0.02, 95% CI [0.01, 0.04]), respectively. Moreover, we observed significant dose-response relationships between TT4 and the mixture of 11 EDCs, and BPF was the main contributor to the mixture effect, suggesting the priority of potential effect of BPF on disrupting thyroid function under a real scenario of human exposure to multiple EDCs. Our findings supported the hypothesis that human exposure to low levels of EDCs could alter thyroid hormones homeostasis among non-occupational healthy adults.
Collapse
Affiliation(s)
- Bing Yue
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Shangyong Ning
- Hematology Department, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Hongjian Miao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Congrong Fang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Yan Bao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Sai Fan
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China.
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| |
Collapse
|
13
|
Zhang L, Jiang J, Jia W, Wan X, Li Y, Jiao J, Zhang Y. Physiologically-based toxicokinetic model for the prediction of perchlorate distribution and its application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120856. [PMID: 36513174 DOI: 10.1016/j.envpol.2022.120856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/16/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Perchlorate is a stable and readily transportable thyroid hormone disruptor, and prevalent exposure to perchlorate through food and drinking water has raised public concern about its health effects. The physiologically based toxicokinetic (PBTK) model as a dose prediction method is effective to predict the toxicant exposure dose of an organism and helps quantitatively assess the dose-dependent relationship with toxic effects. The current study aimed to establish a multi-compartment PBTK model based on updated time-course datasets of single oral exposure to perchlorate in rats. With adjustment of the kinetic parameters, the model fitted well the toxicokinetic characteristics of perchlorate in urine, blood, and thyroid from our experiments and the literature, and the coefficient of determination (R2) between the fitting values and the experimental data in regression analysis was greater than 0.91, indicating the robustness of the current model. The results of sensitivity analysis and daily repeated exposure simulations together confirmed its effective renal clearance. According to the distribution characteristic of perchlorate, a correlation study of internal and external exposure was conducted using urinary perchlorate as a bioassay indicator. The developed multi-compartment model for perchlorate updates important toxicokinetic data and kinetic parameters, providing analytical and modeling tools for deriving total exposure levels in the short term.
Collapse
Affiliation(s)
- Lange Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Jiahao Jiang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Wei Jia
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Xuzhi Wan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Yaoran Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
14
|
Kumar KS, Kavitha S, Parameswari K, Sakunthala A, Sathishkumar P. Environmental occurrence, toxicity and remediation of perchlorate - A review. CHEMOSPHERE 2023; 311:137017. [PMID: 36377118 DOI: 10.1016/j.chemosphere.2022.137017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Perchlorate (ClO4-) comes under the class of contaminants called the emerging contaminants that will impact environment in the near future. A strong oxidizer by nature, perchlorate has received significant observation due to its occurrence, reactive nature, and persistence in varied environments such as surface water, groundwater, soil, and food. Perchlorate finds its use in number of industrial products ranging from missile fuel, fertilizers, and fireworks. Perchlorate exposure occurs when naturally occurring or manmade perchlorate in water or food is ingested. Perchlorate ingestion affects iodide absorption into the thyroid, thereby causing a decrease in the synthesis of thyroid hormone, a very crucial component needed for metabolism, neural development, and a number of other physiological functions in the body. Perchlorate remediation from ground water and drinking water is carried out through a series of physical-chemical techniques like ion (particle) transfer and reverse osmosis. However, the generation of waste through these processes are difficult to manage, so the need for alternative treatment methods occur. This review talks about the hybrid technologies that are currently researched and gaining momentum in the treatment of emerging contaminants, namely perchlorate.
Collapse
Affiliation(s)
- Krishnan Suresh Kumar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Subbiah Kavitha
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India.
| | - Kalivel Parameswari
- Department of Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Ayyasamy Sakunthala
- Solid State Ionics Lab, Department of Applied Physics, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India.
| |
Collapse
|
15
|
Karbownik-Lewińska M, Stępniak J, Iwan P, Lewiński A. Iodine as a potential endocrine disruptor-a role of oxidative stress. Endocrine 2022; 78:219-240. [PMID: 35726078 PMCID: PMC9584999 DOI: 10.1007/s12020-022-03107-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Iodine is an essential micronutrient required for thyroid hormone biosynthesis. However, overtreatment with iodine can unfavorably affect thyroid physiology. The aim of this review is to present the evidence that iodine-when in excess-can interfere with thyroid hormone synthesis and, therefore, can act as a potential endocrine-disrupting chemical (EDC), and that this action, as well as other abnormalities in the thyroid, occurs-at least partially-via oxidative stress. METHODS We reviewed published studies on iodine as a potential EDC, with particular emphasis on the phenomenon of oxidative stress. RESULTS This paper summarizes current knowledge on iodine excess in the context of its properties as an EDC and its effects on oxidative processes. CONCLUSION Iodine does fulfill the criteria of an EDC because it is an exogenous chemical that interferes-when in excess-with thyroid hormone synthesis. However, this statement cannot change general rules regarding iodine supply, which means that iodine deficiency should be still eliminated worldwide and, at the same time, iodine excess should be avoided. Universal awareness that iodine is a potential EDC would make consumers more careful regarding their diet and what they supplement in tablets, and-what is of great importance-it would make caregivers choose iodine-containing medications (or other chemicals) more prudently. It should be stressed that compared to iodine deficiency, iodine in excess (acting either as a potential EDC or via other mechanisms) is much less harmful in such a sense that it affects only a small percentage of sensitive individuals, whereas the former affects whole populations; therefore, it causes endemic consequences.
Collapse
Affiliation(s)
- Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland.
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland.
| | - Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Paulina Iwan
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Andrzej Lewiński
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338, Lodz, Poland
| |
Collapse
|
16
|
KIANI AYSHAKARIM, DHULI KRISTJANA, DONATO KEVIN, AQUILANTI BARBARA, VELLUTI VALERIA, MATERA GIUSEPPINA, IACONELLI AMERIGO, CONNELLY STEPHENTHADDEUS, BELLINATO FRANCESCO, GISONDI PAOLO, BERTELLI MATTEO. Main nutritional deficiencies. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E93-E101. [PMID: 36479498 PMCID: PMC9710417 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2752] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nutrition is the source of energy that is required to carry out all the processes of human body. A balanced diet is a combination of both macro- and micronutrients. "Nutritional inadequacy" involves an intake of nutrients that is lower than the estimated average requirement, whereas "nutritional deficiency" consists of severely reduced levels of one or more nutrients, making the body unable to normally perform its functions and thus leading to an increased risk of several diseases like cancer, diabetes, and heart disease. Malnutrition could be caused by environmental factors, like food scarcity, as well as disease conditions, like anorexia nervosa, fasting, swallowing inability, persistent vomiting, impaired digestion, intestinal malabsorption, or other chronic diseases. Nutritional biomarkers - like serum or plasma levels of nutrients such as folate, vitamin C, B vitamins, vitamin D, selenium, copper, zinc - could be used for the evaluation of nutrient intake and dietary exposure. Macronutrients deficiencies could cause kwashiorkor, marasmus, ketosis, growth retardation, wound healing, and increased infection susceptibility, whereas micronutrient - like iron, folate, zinc, iodine, and vitamin A - deficiencies lead to intellectual impairment, poor growth, perinatal complications, degenerative diseases associated with aging and higher morbidity and mortality. Preventing macro- and micronutrient deficiency is crucial and this could be achieved through supplementation and food-based approaches.
Collapse
Affiliation(s)
| | | | - KEVIN DONATO
- MAGI EUREGIO, Bolzano, Italy
- Correspondence: Kevin Donato, MAGI EUREGIO, Bolzano,
39100, Italy. E-mail:
| | - BARBARA AQUILANTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli
IRCCS, Rome, Italy
| | - VALERIA VELLUTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli
IRCCS, Rome, Italy
| | - GIUSEPPINA MATERA
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli
IRCCS, Rome, Italy
| | - AMERIGO IACONELLI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli
IRCCS, Rome, Italy
| | - STEPHEN THADDEUS CONNELLY
- San Francisco Veterans Affairs Health Care System,
Department of Oral & Maxillofacial Surgery, University of
California, San Francisco, CA, USA
| | - FRANCESCO BELLINATO
- Section of Dermatology and Venereology, Department of
Medicine, University of Verona, Verona,
Italy
| | - PAOLO GISONDI
- Section of Dermatology and Venereology, Department of
Medicine, University of Verona, Verona,
Italy
| | - MATTEO BERTELLI
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN),
Italy
- MAGISNAT, Peachtree Corners (GA),
USA
| |
Collapse
|
17
|
Melough MM, Maffini MV, Otten JJ, Sathyanarayana S. Diet quality and exposure to endocrine-disrupting chemicals among US adults. ENVIRONMENTAL RESEARCH 2022; 211:113049. [PMID: 35240113 DOI: 10.1016/j.envres.2022.113049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Human exposure to endocrine-disrupting chemicals (EDCs) may increase risk for chronic disease. Diet is a significant source of EDC exposure, yet healthy diets recommended for chronic disease prevention have not been thoroughly examined for associations with EDC exposure. Using data from the National Health and Nutrition Examination Survey 2013-2016, we examined associations of dietary patterns with exposure to non-persistent EDCs potentially consumed through diet. EDCs were measured in spot urine samples. Diet was assessed using 24-h recalls. Multivariable linear regression was used to examine associations of three healthy diet scores [Healthy Eating Index (HEI), relative Mediterranean Diet (rMED), and Dietary Approaches to Stop Hypertension] and fast-food consumption with EDCs. In fully adjusted models, no diet was associated with exposure to the bisphenols, phthalates, or polycyclic aromatic hydrocarbons examined. A 1-point increase in rMED (of 18 possible points) was associated with 2.7% (95% CI: 1.7%, 3.8%) greater urinary nitrate. A 10-point increase in HEI (of 100 possible points) was associated with 5.3% (95% CI: 2.8%, 7.9%) greater nitrate and 6.8% (95% CI: 4.5%, 9.2%) greater perchlorate. Because perchlorate and nitrate can disrupt thyroid hormone production, we conducted an exploratory analysis to examine whether these chemicals mediate an association between diet and thyroid hormones. A 10-point increase in HEI was associated with 0.6% reduced serum total thyroxine (95% CI: 1.7%, 0.5%) among all adults, with 57.5% of the effect explained by perchlorate. Nitrate mediated an association of rMED with modestly reduced total triiodothyronine among females. Most EDCs examined had no association with the diets evaluated, indicating that recommended healthy diets were not protective against EDC exposures. As observed with two thyroid antagonists, some recommended diets may increase EDC exposures and related adverse health outcomes. Additional work should identify effective food production and processing practices to reduce dietary exposures to potentially harmful EDCs.
Collapse
Affiliation(s)
- Melissa M Melough
- Department of Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
| | | | - Jennifer J Otten
- Center for Public Health Nutrition, Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Sheela Sathyanarayana
- Department of Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, 98101, USA; Center for Public Health Nutrition, Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
18
|
Meng Z, Fan J, Cui X, Yan Y, Ju Z, Lu R, Zhou W, Gao H. Removal of perchlorate from aqueous solution using quaternary ammonium modified magnetic Mg/Al-layered double hydroxide. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Petersen AM, Small CM, Yan Y, Wilson C, Batzel P, Bremiller RA, Buck CL, von Hippel FA, Cresko WA, Postlethwait JH. Evolution and developmental expression of the sodium-iodide symporter ( NIS, slc5a5) gene family: Implications for perchlorate toxicology. Evol Appl 2022; 15:1079-1098. [PMID: 35899258 PMCID: PMC9309457 DOI: 10.1111/eva.13424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022] Open
Abstract
The vertebrate sodium-iodide symporter (NIS or SLC5A5) transports iodide into the thyroid follicular cells that synthesize thyroid hormone. The SLC5A protein family includes transporters of vitamins, minerals, and nutrients. Disruption of SLC5A5 function by perchlorate, a pervasive environmental contaminant, leads to human pathologies, especially hypothyroidism. Perchlorate also disrupts the sexual development of model animals, including threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), but the mechanism of action is unknown. To test the hypothesis that SLC5A5 paralogs are expressed in tissues necessary for the development of reproductive organs, and therefore are plausible candidates to mediate the effects of perchlorate on sexual development, we first investigated the evolutionary history of Slc5a paralogs to better understand potential functional trajectories of the gene family. We identified two clades of slc5a paralogs with respect to an outgroup of sodium/choline cotransporters (slc5a7); these clades are the NIS clade of sodium/iodide and lactate cotransporters (slc5a5, slc5a6, slc5a8, slc5a8, and slc5a12) and the SGLT clade of sodium/glucose cotransporters (slc5a1, slc5a2, slc5a3, slc5a4, slc5a10, and slc5a11). We also characterized expression patterns of slc5a genes during development. Stickleback embryos and early larvae expressed NIS clade genes in connective tissue, cartilage, teeth, and thyroid. Stickleback males and females expressed slc5a5 and its paralogs in gonads. Single-cell transcriptomics (scRNA-seq) on zebrafish sex-genotyped gonads revealed that NIS clade-expressing cells included germ cells (slc5a5, slc5a6a, and slc5a6b) and gonadal soma cells (slc5a8l). These results are consistent with the hypothesis that perchlorate exerts its effects on sexual development by interacting with slc5a5 or its paralogs in reproductive tissues. These findings show novel expression domains of slc5 genes in stickleback and zebrafish, which suggest similar functions across vertebrates including humans, and provide candidates to mediate the effects of perchlorate on sexual development.
Collapse
Affiliation(s)
- Ann M. Petersen
- Department of Biology, Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
- J.J. Howard Marine Lab, Northeast Fisheries Science CenterNational Oceanographic and Atmospheric AdministrationSandy HookNew JerseyUSA
| | - Clayton M. Small
- Department of Biology, Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Yi‐Lin Yan
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| | - Catherine Wilson
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| | - Peter Batzel
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| | - Ruth A. Bremiller
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| | - C. Loren Buck
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Frank A. von Hippel
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonArizonaUSA
| | - William A. Cresko
- Department of Biology, Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - John H. Postlethwait
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| |
Collapse
|
20
|
Žabenský B, Bodor R, Makata D, Szucs R, Masár M. Trace determination of perchlorate in drinking water by capillary zone electrophoresis with isotachophoresis sample cleanup and conductivity detection. J Sep Sci 2022; 45:3339-3347. [PMID: 35661409 DOI: 10.1002/jssc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 06/02/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Branislav Žabenský
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina CH2, Ilkovičova 6, Bratislava, 842 15, Slovakia
| | - Róbert Bodor
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina CH2, Ilkovičova 6, Bratislava, 842 15, Slovakia
| | - Dávid Makata
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina CH2, Ilkovičova 6, Bratislava, 842 15, Slovakia
| | - Roman Szucs
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina CH2, Ilkovičova 6, Bratislava, 842 15, Slovakia
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina CH2, Ilkovičova 6, Bratislava, 842 15, Slovakia
| |
Collapse
|
21
|
Torres-Rojas F, Muñoz D, Pía Canales C, Vargas IT. Bioprospecting for electrochemically active perchlorate-reducing microorganisms. Bioelectrochemistry 2022; 147:108171. [DOI: 10.1016/j.bioelechem.2022.108171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
|
22
|
Mapstone LJ, Leite MN, Purton S, Crawford IA, Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol Adv 2022; 59:107946. [DOI: 10.1016/j.biotechadv.2022.107946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
23
|
Kopacz W, Okninski A, Kasztankiewicz A, Nowakowski P, Rarata G, Maksimowski P. Hydrogen peroxide – a promising oxidizer for rocket propulsion and its application in solid rocket propellants. FIREPHYSCHEM 2022. [DOI: 10.1016/j.fpc.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
24
|
Grußendorf M. [Thyrotoxicosis]. MMW Fortschr Med 2021; 163:50-59. [PMID: 34595648 DOI: 10.1007/s15006-021-0261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Chen Y, Zhu Z, Zhao Y, Wu X, Xiao Q, Deng Y, Li M, Li C, Qiu H, Lu S. Perchlorate in shellfish from South China Sea and implications for human exposure. MARINE POLLUTION BULLETIN 2021; 170:112672. [PMID: 34218037 DOI: 10.1016/j.marpolbul.2021.112672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Shellfish can absorb and accumulate contaminants. The consumption of shellfish could expose humans to pollutants and increase related health risk. Perchlorate (ClO4-) is a ubiquitous pollutant and could affect thyroid functions, especially for children and pregnant women. However, knowledge on the contamination of perchlorate in aquatic food such as shellfish remains limited. This study aimed to investigate the abundances of perchlorate in shellfish from South China Sea and to assess human exposure risks. A total of 178 shellfish samples from eight species were collected from offshore aquaculture waters in South China Sea. Perchlorate was detected in 99.4% of them, suggesting widespread pollution in coastal waters. Concentrations of perchlorate ranged from not detected (N.D.) to 71.5 μg kg-1, with a median value of 4.33 μg kg-1. Estimated daily intake (EDI) and hazard quotient (HQ) were used to assess human exposure dose and health risks, respectively. The HQ values were determined to be less than 1, indicating no significant health risks to local residents via shellfish consumption. To our knowledge, this is the first study to investigate perchlorate contamination in South China shellfish and assess potential human risks.
Collapse
Affiliation(s)
- Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoling Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yilan Deng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Minhui Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Hongmei Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
26
|
Hu J, Xian Y, Wu Y, Chen R, Dong H, Hou X, Liang M, Wang B, Wang L. Perchlorate occurrence in foodstuffs and water: Analytical methods and techniques for removal from water - A review. Food Chem 2021; 360:130146. [PMID: 34034057 DOI: 10.1016/j.foodchem.2021.130146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/15/2022]
Abstract
Perchlorate (ClO4-), a type of contaminant with high diffusivity and durability, has been widely detected in water and foodstuffs, arousing a global concern. It can interfere with normal function of the human thyroid gland, affecting human health. Therefore, determination of perchlorate in water and foodstuffs, and removal from water are important. This review focuses on the occurrence of perchlorate, mainly in water and foodstuffs, and provides an overview of analytical methods for determination of perchlorate over the last two decades. In addition, merits and drawbacks of the various methods have been considered. This review also highlights the most commonly used approaches for removal of perchlorate from water. Finally, current trends and future perspectives in determination of perchlorate and removal from water are proposed. This review provided a comprehensive understanding of perchlorate occurrence and its removal from water, and had practical significance in reducing the harm of perchlorate to human.
Collapse
Affiliation(s)
- Junpeng Hu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Rongqiao Chen
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Bin Wang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Li Wang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| |
Collapse
|
27
|
Levakov I, Han J, Ronen Z, Dahan O. Inhibition of perchlorate biodegradation by ferric and ferrous iron. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124555. [PMID: 33223313 DOI: 10.1016/j.jhazmat.2020.124555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Previous observations from in-situ biological treatments in the subsurface of a perchlorate-contaminated site revealed multiple reduction processes occurring parallel to perchlorate degradation. Iron reduction was accelerated and correlated with a decline in the efficiency of the in-situ perchlorate reduction. In the current study, we examined the influence of iron forms on perchlorate reduction. A series of kinetic laboratory experiments were conducted, using an indigenous mixed perchlorate-reducing culture, enriched from the polluted soil that was undergoing bioremediation. The results show that ferrous iron was a non-competitive inhibitor with a 41% decrease in µmax for perchlorate reduction. Moreover, chlorate was accumulated in all samples treated with ferrous iron, indicating a disruption to the chlorate reduction step. Ferric iron, however, had less impact on perchlorate degradation with non-competitive inhibition reaching a 23% decrease in µmax. Scanning electron microscopy (SEM) revealed that the presence of ferrous iron in the perchlorate degradation enrichment culture initiated cell encrustation. We propose that during perchlorate reduction and the emission of oxygen from chlorite dismutation, the chemical oxidation of ferrous iron occurred near the bacteria's surface where the enzyme is located, forming an oxidized iron crust layer that can directly affect the perchlorate reduction enzymatic system.
Collapse
Affiliation(s)
- Ilil Levakov
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel.
| | - Jincheng Han
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel.
| | - Zeev Ronen
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel.
| | - Ofer Dahan
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel.
| |
Collapse
|
28
|
Vandenberg LN. Endocrine disrupting chemicals: strategies to protect present and future generations. Expert Rev Endocrinol Metab 2021; 16:135-146. [PMID: 33973826 DOI: 10.1080/17446651.2021.1917991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
Introduction: Endocrine-disrupting chemicals (EDCs) are chemicals that alter the actions of hormones. In the 21st Century, numerous expert groups of clinicians, scientists, and environmental activists have called for action to protect present and future generations from the harm induced by EDC exposures. These demands for regulatory responses come because of the strong weight of the evidence from epidemiology, wildlife, and controlled laboratory studies.Areas covered: In this review, we examine the conclusions drawn by experts from different scientific and medical disciplines. We also address several areas where recent findings or work has changed the landscape of EDC work including new approaches to identify and evaluate the evidence for EDCs using a key characteristics approach, the need to expand our understanding of vulnerable periods of development, and the increasing concern that traditional methods used to evaluate toxicity of environmental chemicals are insufficient for EDCs and how collaborative science could help to address these gaps.Expert opinion: The science is clear: there is more than enough evidence to demonstrate that EDCs affect the health of humans and wildlife. Waiting to act is a decision that puts the health of current and future generations at risk.
Collapse
Affiliation(s)
- Laura N Vandenberg
- School of Public Health & Health Sciences, Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA USA
| |
Collapse
|
29
|
A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars. MINERALS 2021. [DOI: 10.3390/min11050475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Sample Analysis at Mars (SAM) instrument on the Curiosity rover has detected evidence of oxychlorine compounds (i.e., perchlorates and chlorates) in Gale crater, which has implications for past habitability, diagenesis, aqueous processes, interpretation of in situ organic analyses, understanding the martian chlorine cycle, and hazards and resources for future human exploration. Pure oxychlorines and mixtures of oxychlorines with Mars-analog phases have been analyzed for their oxygen (O2) and hydrogen chloride (HCl) releases on SAM laboratory analog instruments in order to constrain which phases are present in Gale crater. These studies demonstrated that oxychlorines evolve O2 releases with peaks between ~200 and 600 °C, although the thermal decomposition temperatures and the amount of evolved O2 decrease when iron phases are present in the sample. Mg and Fe oxychlorines decompose into oxides and release HCl between ~200 and 542 °C. Ca, Na, and K oxychlorines thermally decompose into chlorides and do not evolve HCl by themselves. However, the chlorides (original or from oxychlorine decomposition) can react with water-evolving phases (e.g., phyllosilicates) in the sample and evolve HCl within the temperature range of SAM (<~870 °C). These laboratory analog studies support that the SAM detection of oxychlorine phases is consistent with the presence of Mg, Ca, Na, and K perchlorate and/or chlorate along with possible contributions from adsorbed oxychlorines in Gale crater samples.
Collapse
|
30
|
Scappaticcio L, Bellastella G, Maiorino MI, Giovanella L, Esposito K. Medical treatment of thyrotoxicosis. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2021; 65:113-123. [PMID: 33494589 DOI: 10.23736/s1824-4785.21.03334-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Medical treatment is the primary therapeutic option for thyrotoxicosis/hyperthyroidism. Two groups of causes of thyrotoxicosis (i.e. thyrotoxicosis with hyperthyroidism and thyrotoxicosis without hyperthyroidism) need to be considered for therapeutic reasons. Herein we provide an updated review on the role of conventional medical therapies (i.e. β-blockers, antithyroid drugs [ATDs], corticosteroids, inorganic iodide, perchlorate, cholecystographic agents, lithium, cholestyramine) in the main causes of thyrotoxicosis, starting from the rationale subtending their clinical application.
Collapse
Affiliation(s)
- Lorenzo Scappaticcio
- Unit of Endocrinology and Metabolic Diseases, Luigi Vanvitelli University of Campania, Naples, Italy -
| | - Giuseppe Bellastella
- Unit of Endocrinology and Metabolic Diseases, Luigi Vanvitelli University of Campania, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Maria I Maiorino
- Unit of Endocrinology and Metabolic Diseases, Luigi Vanvitelli University of Campania, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Luca Giovanella
- Clinic for Nuclear Medicine and Competence Center for Thyroid Diseases, Imaging Institute of Southern Switzerland, Bellinzona, Switzerland.,Clinic for Nuclear Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, Luigi Vanvitelli University of Campania, Naples, Italy.,Unit of Diabetes, Luigi Vanvitelli University of Campania, Naples, Italy
| |
Collapse
|
31
|
Chang WH, Chen HL, Lee CC. Dietary exposure assessment to perchlorate in the Taiwanese population: A risk assessment based on the probabilistic approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115486. [PMID: 32911335 DOI: 10.1016/j.envpol.2020.115486] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Perchlorate is an endocrine-disrupting chemical (EDC) that contaminate various foodstuffs. Exposure to perchlorate may cause severe health problems, mainly thyroid dysfunction. However, information on perchlorate contamination of consumer foods in Taiwan is limited. This study investigated perchlorate levels in 310 food samples belonging to 12 food groups collected from Taiwanese markets. A probabilistic risk assessment was conducted to assess the related exposure to Taiwanese people. Perchlorate was detected in 65% of the samples and high levels were identified in certain plant-origin, fruit, and processed food samples. A probabilistic approach was used to estimate daily dietary dose (Monte Carlo-estimated 95th percentile dietary exposure [MCS 95]) by using the Taiwan National Food Consumption database for 14 sex/age groups. The highest and lowest average daily doses (ADDs) were in the age groups of >65 years (MCS 95 = 3.60/3.90 [male/female] μg/kg bw/day) and 16-18 years (MCS 95 = 1.70/1.47 [M/F] μg/kg bw/day), respectively. The 95th percentile of the hazard index of exposure to perchlorate of all sex/age groups far exceeded the tolerable daily intake (0.3 μg/kg bw/day) and reference dose (0.7 μg/kg bw/day) set by the European Food Safety Authority and US EPA, respectively, but it was lower than the provisional maximum tolerable daily intake (10 μg/kg bw/day) suggested by the Joint FAO/WHO Expert Committee on Food Additives. The intake quantity and concentrations of perchlorate from vegetables, fruits, and whole grains are the critical contributors for the ADDs and integrated risk of dietary exposure to perchlorate. Long-term exposure through diets should be considered, instead of focusing on individual EDC during dietary risk assessment in specific populations. Furthermore, cumulative risks for exposure to multiple contaminants, particularly those causing thyroid adverse effects, may be higher than that from perchlorate exposure alone.
Collapse
Affiliation(s)
- Wei-Hsiang Chang
- Department of Food Safety/ Hygiene and Risk Management, Medical College, National Cheng Kung University, Tainan, 704, Taiwan; Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/ Hygiene and Risk Management, Medical College, National Cheng Kung University, Tainan, 704, Taiwan; Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ching-Chang Lee
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, 701, Taiwan; Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, Tainan, 704, Taiwan.
| |
Collapse
|
32
|
Lisco G, De Tullio A, Giagulli VA, De Pergola G, Triggiani V. Interference on Iodine Uptake and Human Thyroid Function by Perchlorate-Contaminated Water and Food. Nutrients 2020; 12:E1669. [PMID: 32512711 PMCID: PMC7352877 DOI: 10.3390/nu12061669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Perchlorate-induced natrium-iodide symporter (NIS) interference is a well-recognized thyroid disrupting mechanism. It is unclear, however, whether a chronic low-dose exposure to perchlorate delivered by food and drinks may cause thyroid dysfunction in the long term. Thus, the aim of this review was to overview and summarize literature results in order to clarify this issue. METHODS Authors searched PubMed/MEDLINE, Scopus, Web of Science, institutional websites and Google until April 2020 for relevant information about the fundamental mechanism of the thyroid NIS interference induced by orally consumed perchlorate compounds and its clinical consequences. RESULTS Food and drinking water should be considered relevant sources of perchlorate. Despite some controversies, cross-sectional studies demonstrated that perchlorate exposure affects thyroid hormone synthesis in infants, adolescents and adults, particularly in the case of underlying thyroid diseases and iodine insufficiency. An exaggerated exposure to perchlorate during pregnancy leads to a worse neurocognitive and behavioral development outcome in infants, regardless of maternal thyroid hormone levels. DISCUSSION AND CONCLUSION The effects of a chronic low-dose perchlorate exposure on thyroid homeostasis remain still unclear, leading to concerns especially for highly sensitive patients. Specific studies are needed to clarify this issue, aiming to better define strategies of detection and prevention.
Collapse
Affiliation(s)
- Giuseppe Lisco
- ASL Brindisi, Unit of Endocrinology, Metabolism & Clinical Nutrition, Hospital “A. Perrino”, Strada per Mesagne 7, 72100 Brindisi, Puglia, Italy;
| | - Anna De Tullio
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
- Clinic of Endocrinology and Metabolic Disease, Conversano Hospital, Via Edmondo de Amicis 36, 70014 Conversano, Bari, Puglia, Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy;
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| |
Collapse
|
33
|
Responses of microbial community to different concentration of perchlorate in the Qingyi River. 3 Biotech 2020; 10:21. [PMID: 31897359 DOI: 10.1007/s13205-019-2012-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022] Open
Abstract
Perchlorate is a refractory and mobile contaminant that is wildly distributed in surface water, and due to its tremendous inhibitory effect on mammalian thyroid function, it has gained much attention in recent years. Numerous studies have focused on environmental detection of perchlorate, especially in water. However, less attention has been paid to the effects of perchlorate on the composition of the microbial community in rivers. Upstream of the Qingyi River, an important source of drinking water for local residents, there are two perchlorate manufacturers. In this study, we selected eight study sites from upstream to downstream of the Qingyi River, including sites located upstream and downstream of the perchlorate manufacturers. Our results indicated that perchlorate was detected in all sites except for QYR2, QYR3, and QYR10. The concentration of perchlorate in the five study sites was much higher than the reference dose proposed by the National Academy of Science, and ranged from 187 to 9647.00 μg/L. We utilized 16S rDNA high throughput sequencing to analyze changes in the composition of the microbial community, based on the Illumina 2 × 250 MiSeq platform. The results showed that, when microbial communities were exposed to high concentration of perchlorate, there was an increase in the ratio of Betaproteobacteria, Bacteroidetes, Actinobacteria, and Saccharibacteria in the microbial community along with a decrease in the ratio of Chloroflexi, Verrucomicrobia, and Gammaproteobacteria. Our study has provided a theoretical basis for the alteration of the microbial community caused by the perchlorate pollution, which maybe have a truly important impact on the quality of groundwater.
Collapse
|
34
|
Wang Z, Sparling M, Wang KC, Arbuckle TE, Fraser W. Perchlorate in human milk samples from the maternal-infant research on environmental chemicals study (MIREC). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1837-1846. [DOI: 10.1080/19440049.2019.1668968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zhongwen Wang
- Bureau of Chemical Safety, Food Directorate, Health Product and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Melissa Sparling
- Bureau of Chemical Safety, Food Directorate, Health Product and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Kuan Chiao Wang
- Bureau of Food Surveillance and Science Integration, Food Directorate, Health Product and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Tye E. Arbuckle
- Population Studies Division, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - William Fraser
- Departement D'obstetrique et gynecologie, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Sainte Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
35
|
Hines DE, Conolly RB, Jarabek AM. A Quantitative Source-to-Outcome Case Study To Demonstrate the Integration of Human Health and Ecological End Points Using the Aggregate Exposure Pathway and Adverse Outcome Pathway Frameworks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11002-11012. [PMID: 31436975 DOI: 10.1021/acs.est.9b04639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Exposure to environmental contaminants can lead to adverse outcomes in both human and nonhuman receptors. The Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP) frameworks can mechanistically inform cumulative risk assessment for human health and ecological end points by linking together environmental transport and transformation, external exposure, toxicokinetics, and toxicodynamics. This work presents a case study of a hypothetical contaminated site to demonstrate a quantitative approach for implementing the AEP framework and linking this framework to AOPs. We construct an AEP transport and transformation model and then quantify external exposure pathways for humans, fishes, and small herbivorous mammals at the hypothetical site. A Monte Carlo approach was used to address parameter variability. Source apportionment was quantified for each species, and published pharmacokinetic models were used to estimate internal target site exposure from external exposures. Published dose-response data for a multispecies AOP network were used to interpret AEP results in the context of species-specific effects. This work demonstrates (1) the construction, analysis, and application of a quantitative AEP model, (2) the utility of AEPs for organizing mechanistic exposure data and highlighting data gaps, and (3) the advantages provided by a source-to-outcome construct for leveraging exposure data and to aid transparency regarding assumptions.
Collapse
Affiliation(s)
- David E Hines
- U.S. Environmental Protection Agency , Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division , Research Triangle Park, Durham , North Carolina 27709 , United States
| | - Rory B Conolly
- U.S. Environmental Protection Agency , Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division , Research Triangle Park, Durham , North Carolina 27709 , United States
| | - Annie M Jarabek
- U.S. Environmental Protection Agency , Office of Research and Development, National Center for Environmental Assessment , Research Triangle Park, Durham , North Carolina 27709 , United States
| |
Collapse
|
36
|
Thambirajah AA, Koide EM, Imbery JJ, Helbing CC. Contaminant and Environmental Influences on Thyroid Hormone Action in Amphibian Metamorphosis. Front Endocrinol (Lausanne) 2019; 10:276. [PMID: 31156547 PMCID: PMC6530347 DOI: 10.3389/fendo.2019.00276] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Aquatic and terrestrial environments are increasingly contaminated by anthropogenic sources that include pharmaceuticals, personal care products, and industrial and agricultural chemicals (i. e., pesticides). Many of these substances have the potential to disrupt endocrine function, yet their effect on thyroid hormone (TH) action has garnered relatively little attention. Anuran postembryonic metamorphosis is strictly dependent on TH and perturbation of this process can serve as a sensitive barometer for the detection and mechanistic elucidation of TH disrupting activities of chemical contaminants and their complex mixtures. The ecological threats posed by these contaminants are further exacerbated by changing environmental conditions such as temperature, photoperiod, pond drying, food restriction, and ultraviolet radiation. We review the current knowledge of several chemical and environmental factors that disrupt TH-dependent metamorphosis in amphibian tadpoles as assessed by morphological, thyroid histology, behavioral, and molecular endpoints. Although the molecular mechanisms for TH disruption have yet to be determined for many chemical and environmental factors, several affect TH synthesis, transport or metabolism with subsequent downstream effects. As molecular dysfunction typically precedes phenotypic or histological pathologies, sensitive assays that detect changes in transcript, protein, or metabolite abundance are indispensable for the timely detection of TH disruption. The emergence and application of 'omics techniques-genomics, transcriptomics, proteomics, metabolomics, and epigenomics-on metamorphosing tadpoles are powerful emerging assets for the rapid, proxy assessment of toxicant or environmental damage for all vertebrates including humans. Moreover, these highly informative 'omics techniques will complement morphological, behavioral, and histological assessments, thereby providing a comprehensive understanding of how TH-dependent signal disruption is propagated by environmental contaminants and factors.
Collapse
Affiliation(s)
| | | | | | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
37
|
Levakov I, Ronen Z, Dahan O. Combined in-situ bioremediation treatment for perchlorate pollution in the vadose zone and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:439-447. [PMID: 30784974 DOI: 10.1016/j.jhazmat.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Perchlorate is considered a rapidly spreading environmental pollutant. In Israel, it has been found at high concentrations in the vadose zone (up to 30,000 mg/L) and groundwater (up to 800 mg/L) underlying former industrial waste ponds. A perchlorate-reduction method that utilizes the high degradation potential of shallow soil and the high mobility of perchlorate across the deep unsaturated zone has been proposed. The combined treatment method includes recurrent pumping and application of polluted groundwater amended with an electron donor to the shallow soil layers. As a result, perchlorate is biodegraded in the upper soil, and the treated water drains through the unsaturated zone, displacing the pollutant toward the water table, where it is immediately pumped back to the surface for further treatment through a cyclic process. In the current study, the combined treatment approach was tested in a full-scale unsaturated zone (40 m), long-term (1 year) field experiment. Results showed a daily reduction in perchlorate concentration from 800 mg/L to practically zero. A total of ˜330 kg of perchlorate was reduced during the experiment. Nevertheless, competitive reduction (iron and sulfate) and soil acidification were found to be limiting factors. The study demonstrates a potentially efficient way to overcome these limitations by optimizing electron donor concentration.
Collapse
Affiliation(s)
- Ilil Levakov
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 8499000, Israel.
| | - Zeev Ronen
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 8499000, Israel.
| | - Ofer Dahan
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 8499000, Israel.
| |
Collapse
|
38
|
Wang J, Hallinger DR, Murr AS, Buckalew AR, Lougee RR, Richard AM, Laws SC, Stoker TE. High-throughput screening and chemotype-enrichment analysis of ToxCast phase II chemicals evaluated for human sodium-iodide symporter (NIS) inhibition. ENVIRONMENT INTERNATIONAL 2019; 126:377-386. [PMID: 30826616 PMCID: PMC9082575 DOI: 10.1016/j.envint.2019.02.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 05/26/2023]
Abstract
In support of the Endocrine Disruptor Screening Program (EDSP), the U.S.EPA's Office of Research and Development (ORD) is developing high-throughput screening (HTS) approaches to identify chemicals that alter target sites in the thyroid hormone (TH) pathway. The sodium iodide symporter (NIS) is a transmembrane glycoprotein that mediates iodide uptake into the thyroid as the initial step of TH biosynthesis. Previously, we screened 293 ToxCast chemicals (ph1v2) using a HEK293T cell line expressing human NIS in parallel radioactive iodide uptake (RAIU) and cell viability assays to identify potential environmental NIS inhibitors. Here, we expanded NIS inhibitor screening for a set of 768 ToxCast Phase II (ph2) chemicals, and applied a novel computational toxicology approach based on the ToxPrint chemotype to identify chemical substructures associated with NIS inhibition. Following single-concentration screening (at 1 × 10-4 M with a 20% inhibition cutoff), 235 samples (228 chemicals) were further tested in multiple-concentration (1 × 10-9 - 1 × 10-4 M) format in both RAIU and cell viability assays. The 167 chemicals that exhibited significant RAIU inhibition were then prioritized using combined RAIU and cell viability responses that were normalized relative to the known NIS inhibitor sodium perchlorate. Some of the highest ranked chemicals, such as PFOS, tributyltin chloride, and triclocarban, have been previously reported to be thyroid disruptors. In addition, several novel chemicals were identified as potent NIS inhibitors. The present results were combined with the previous ph1v2 screening results to produce two sets of binary hit-calls for 1028 unique chemicals, consisting of 273 positives exhibiting significant RAIU inhibition, and 63 positives following application of a cell viability filter. A ToxPrint chemotype-enrichment analysis identified >20 distinct chemical substructural features, represented in >60% of the active chemicals, as significantly enriched in each NIS inhibition hit-call space. A shared set of 9 chemotypes enriched in both hit-call sets indicates stable chemotype signals (insensitive to cytotoxicity filters) that can help guide structure-activity relationship (SAR) investigations and inform future research.
Collapse
Affiliation(s)
- Jun Wang
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA; Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA
| | - Daniel R Hallinger
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ashley S Murr
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Angela R Buckalew
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ryan R Lougee
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA; National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ann M Richard
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Susan C Laws
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Tammy E Stoker
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
39
|
Panth P, Guerin G, DiMarco NM. A Review of Iodine Status of Women of Reproductive Age in the USA. Biol Trace Elem Res 2019; 188:208-220. [PMID: 30617900 PMCID: PMC6373336 DOI: 10.1007/s12011-018-1606-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/05/2018] [Indexed: 01/20/2023]
Abstract
Iodine, an essential micronutrient, is required to produce thyroid hormones. Iodine deficiency disorders (IDD) comprise a range of adverse maternal and fetal outcomes, with the most significant irreversible effect resulting from neurodevelopmental deficits in fetal brain caused by deficient iodine status during early pregnancy. The objective of this scoping review was to summarize the studies that assessed iodine status of women of reproductive age in the USA. A systematic review of literature using the PRISMA Extension for Scoping Reviews (PRISMA-ScR) statement was conducted. PubMed, Medline, CINAHL, EMBASE, EBSCOHost, Cochrane, ERIC, Google Scholar, and Web of Science databases were searched, 1652 records were identified. One thousand six hundred forty-one records that did not satisfy the inclusion/exclusion criteria and quality review were excluded, and 11 peer-reviewed articles were determined to be eligible for this scoping review. Despite the USA being considered iodine sufficient for the general population, the US dietary iodine intakes have decreased drastically since the 1970s, with iodine deficiency reemerging in vulnerable groups such as women of reproductive age. Although data to conduct a scoping review of iodine status among women of reproductive age in the USA was scarce, majority of the articles reviewed demonstrate emergent iodine deficiency in this population of women of reproductive age, indicating alarm for a public health concern needing immediate attention.
Collapse
Affiliation(s)
- Pallavi Panth
- Department of Nutrition and Food Sciences, College of Health Sciences, Texas Woman's University, P.O. Box 425888, Denton, TX, 76204-5876, USA.
- Institute for Women's Health, College of Health Sciences, Texas Woman's University, Denton, TX, 76204-5876, USA.
| | - Gena Guerin
- Department of Kinesiology, College of Health Sciences, Texas Woman's University, Denton, TX, 76204-5876, USA
| | - Nancy M DiMarco
- Department of Nutrition and Food Sciences, College of Health Sciences, Texas Woman's University, P.O. Box 425888, Denton, TX, 76204-5876, USA.
- Institute for Women's Health, College of Health Sciences, Texas Woman's University, Denton, TX, 76204-5876, USA.
| |
Collapse
|
40
|
Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability. Proc Natl Acad Sci U S A 2019; 116:3614-3623. [PMID: 30755533 DOI: 10.1073/pnas.1803794116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite therapeutic advances, heart failure is the major cause of morbidity and mortality worldwide, but why cardiac regenerative capacity is lost in adult humans remains an enigma. Cardiac regenerative capacity widely varies across vertebrates. Zebrafish and newt hearts regenerate throughout life. In mice, this ability is lost in the first postnatal week, a period physiologically similar to thyroid hormone (TH)-regulated metamorphosis in anuran amphibians. We thus assessed heart regeneration in Xenopus laevis before, during, and after TH-dependent metamorphosis. We found that tadpoles display efficient cardiac regeneration, but this capacity is abrogated during the metamorphic larval-to-adult switch. Therefore, we examined the consequence of TH excess and deprivation on the efficiently regenerating tadpole heart. We found that either acute TH treatment or blocking TH production before resection significantly but differentially altered gene expression and kinetics of extracellular matrix components deposition, and negatively impacted myocardial wall closure, both resulting in an impeded regenerative process. However, neither treatment significantly influenced DNA synthesis or mitosis in cardiac tissue after amputation. Overall, our data highlight an unexplored role of TH availability in modulating the cardiac regenerative outcome, and present X. laevis as an alternative model to decipher the developmental switches underlying stage-dependent constraint on cardiac regeneration.
Collapse
|
41
|
Wang J, Hallinger DR, Murr AS, Buckalew AR, Simmons SO, Laws SC, Stoker TE. High-Throughput Screening and Quantitative Chemical Ranking for Sodium-Iodide Symporter Inhibitors in ToxCast Phase I Chemical Library. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5417-5426. [PMID: 29611697 PMCID: PMC6697091 DOI: 10.1021/acs.est.7b06145] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Thyroid uptake of iodide via the sodium-iodide symporter (NIS) is the first step in the biosynthesis of thyroid hormones that are critical for health and development in humans and wildlife. Despite having long been a known target of endocrine disrupting chemicals such as perchlorate, information regarding NIS inhibition activity is still unavailable for the vast majority of environmental chemicals. This study applied a previously validated high-throughput approach to screen for NIS inhibitors in the ToxCast phase I library, representing 293 important environmental chemicals. Here 310 blinded samples were screened in a tiered-approach using an initial single-concentration (100 μM) radioactive-iodide uptake (RAIU) assay, followed by 169 samples further evaluated in multi-concentration (0.001 μM-100 μM) testing in parallel RAIU and cell viability assays. A novel chemical ranking system that incorporates multi-concentration RAIU and cytotoxicity responses was also developed as a standardized method for chemical prioritization in current and future screenings. Representative chemical responses and thyroid effects of high-ranking chemicals are further discussed. This study significantly expands current knowledge of NIS inhibition potential in environmental chemicals and provides critical support to U.S. EPA's Endocrine Disruptor Screening Program (EDSP) initiative to expand coverage of thyroid molecular targets, as well as the development of thyroid adverse outcome pathways (AOPs).
Collapse
Affiliation(s)
- Jun Wang
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Daniel R. Hallinger
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ashley S. Murr
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Angela R. Buckalew
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Steven O. Simmons
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Susan C. Laws
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- Corresponding authors: (Phone: 919-541-0173 Fax: 919-541-5138) and (Phone: 919-541-2783 Fax: 919-541-5138)
| | - Tammy E. Stoker
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- Corresponding authors: (Phone: 919-541-0173 Fax: 919-541-5138) and (Phone: 919-541-2783 Fax: 919-541-5138)
| |
Collapse
|
42
|
Serrano-Nascimento C, Calil-Silveira J, Dalbosco R, Zorn TT, Nunes MT. Evaluation of hypothalamus-pituitary-thyroid axis function by chronic perchlorate exposure in male rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:209-219. [PMID: 29139221 DOI: 10.1002/tox.22509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Perchlorate is a widespread endocrine disruptor that was previously correlated with increased serum TSH levels and decreased thyroid hormones production both in animals and humans. Even so, the regulation of gene/protein expression in the hypothalamus, pituitary and thyroid by chronic perchlorate exposure was not completely elucidated. Therefore, this study aimed to investigate the underlying mechanisms involved in the disruption of hypothalamus-pituitary-thyroid axis by chronic perchlorate exposure. Male Wistar rats were treated or not with NaClO4 in the drinking water (35 mg/Kg/day) for 60 days. Thereafter, hormone/cytokines serum levels were measured through multiplex assays; genes/proteins expression were investigated by qPCR/Western Blotting and thyroid morphology was evaluated through histological analysis. Serum TSH levels were increased and serum T4 /T3 levels were decreased in perchlorate-treated animals. This treatment also altered the thyrotropin-releasing hormone mRNA/protein content in the hypothalamus. Additionally, the expression of both subunits of TSH were increased in the pituitary of perchlorate-treated rats, which also presented significant alterations in the thyroid morphology/gene expression. Furthermore, perchlorate exposure reduced liver Dio1 mRNA expression and increased the content of pro-inflammatory cytokines in the thyroid and the serum. In conclusion, our study adds novel findings about the perchlorate-induced disruption of the hypothalamus-pituitary-thyroid axis gene/protein expression in male rats. The data presented herein also suggest that perchlorate induces thyroid and systemic inflammation through the increased production of cytokines. Taken together, our results suggest that perchlorate contamination should be monitored, especially in the individuals most susceptible to the deleterious effects of reduced levels of thyroid hormones.
Collapse
Affiliation(s)
| | - Jamile Calil-Silveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Rafael Dalbosco
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Telma Tenorio Zorn
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
43
|
Hines DE, Edwards SW, Conolly RB, Jarabek AM. A Case Study Application of the Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP) Frameworks to Facilitate the Integration of Human Health and Ecological End Points for Cumulative Risk Assessment (CRA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:839-849. [PMID: 29236470 PMCID: PMC6003653 DOI: 10.1021/acs.est.7b04940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cumulative risk assessment (CRA) methods promote the use of a conceptual site model (CSM) to apportion exposures and integrate risk from multiple stressors. While CSMs may encompass multiple species, evaluating end points across taxa can be challenging due to data availability and physiological differences among organisms. Adverse outcome pathways (AOPs) describe biological mechanisms leading to adverse outcomes (AOs) by assembling causal pathways with measurable intermediate steps termed key events (KEs), thereby providing a framework for integrating data across species. In this work, we used a case study focused on the perchlorate anion (ClO4-) to highlight the value of the AOP framework for cross-species data integration. Computational models and dose-response data were used to evaluate the effects of ClO4- in 12 species and revealed a dose-response concordance across KEs and taxa. The aggregate exposure pathway (AEP) tracks stressors from sources to the exposures and serves as a complement to the AOP. We discuss how the combined AEP-AOP construct helps to maximize the use of existing data and advances CRA by (1) organizing toxicity and exposure data, (2) providing a mechanistic framework of KEs for integrating data across human health and ecological end points, (3) facilitating cross-species dose-response evaluation, and (4) highlighting data gaps and technical limitations.
Collapse
Affiliation(s)
- David E. Hines
- U.S. Environmental Protection Agency, Office of Research and Development, National, Health and Environmental Effects Research Laboratory
| | - Stephen W. Edwards
- U.S. Environmental Protection Agency, Office of Research and Development, National, Health and Environmental Effects Research Laboratory
| | - Rory B. Conolly
- U.S. Environmental Protection Agency, Office of Research and Development, National, Health and Environmental Effects Research Laboratory
| | - Annie M. Jarabek
- U.S. Environmental Protection Agency, Office of Research and Development, National, Center for Environmental Assessment
| |
Collapse
|
44
|
Ucal Y, Sahin ON, Serdar M, Blount B, Kumru P, Muhcu M, Eroglu M, Akin-Levi C, Keles ZZY, Turam C, Valentin-Blasini L, Morel-Espinosa M, Serteser M, Unsal I, Ozpinar A. Exposure to Perchlorate in Lactating Women and Its Associations With Newborn Thyroid Stimulating Hormone. Front Endocrinol (Lausanne) 2018; 9:348. [PMID: 30018593 PMCID: PMC6037697 DOI: 10.3389/fendo.2018.00348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Perchlorate, thiocyanate, and nitrate can block iodide transport at the sodium iodide symporter (NIS) and this can subsequently lead to decreased thyroid hormone production and hypothyroidism. NIS inhibitor exposure has been shown to reduce iodide uptake and thyroid hormone levels; therefore we hypothesized that maternal NIS inhibitor exposure will influence both maternal and newborn thyroid function. Methods: Spot urine samples were collected from 185 lactating mothers and evaluated for perchlorate, thiocyanate, and nitrate concentrations. Blood and colostrum samples were collected from the same participants in the first 48 h after delivery. Thyroid hormones and thyroid-related antibodies (TSH, fT3, fT4, anti-TPO, anti-Tg) were analyzed in maternal blood and perchlorate was analyzed in colostrum. Also, spot blood samples were collected from newborns (n = 185) between 48 and 72 postpartum hours for TSH measurement. Correlation analysis was performed to assess the effect of NIS inhibitors on thyroid hormone levels of lactating mothers and their newborns in their first 48 postpartum hours. Results: The medians of maternal urinary perchlorate (4.00 μg/g creatinine), maternal urinary thiocyanate (403 μg/g creatinine), and maternal urinary nitrate (49,117 μg/g creatinine) were determined. Higher concentrations of all three urinary NIS inhibitors (μg/g creatinine) at their 75th percentile levels were significantly correlated with newborn TSH (r = 0.21, p < 0.001). Median colostrum perchlorate level concentration of all 185 participants was 2.30 μg/L. Colostrum perchlorate was not significantly correlated with newborn TSH (p > 0.05); however, there was a significant correlation between colostrum perchlorate level and maternal TSH (r = 0.21, p < 0.01). Similarly, there was a significant positive association between colostrum perchlorate and maternal urinary creatinine adjusted perchlorate (r = 0.32, p < 0.001). Conclusion: NIS inhibitors are ubiquitous in lactating women in Turkey and are associated with increased TSH levels in newborns, thus signifying for the first time that co-exposure to maternal NIS inhibitors can have a negative effect on the newborn thyroid function.
Collapse
Affiliation(s)
- Yasemin Ucal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozlem N. Sahin
- Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Muhittin Serdar
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ben Blount
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Pinar Kumru
- Department of Obstetrics and Gynecology, Zeynep Kamil Research and Training Hospital, Istanbul, Turkey
| | - Murat Muhcu
- Department of Obstetrics and Gynecology, Haydarpasa Hospital of Gülhane Military Practice School and Hospital, Istanbul, Turkey
| | - Mustafa Eroglu
- Department of Obstetrics and Gynecology, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Cansu Akin-Levi
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Z. Zeynep Yildirim Keles
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Cem Turam
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | | | - Mustafa Serteser
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Aysel Ozpinar
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- *Correspondence: Aysel Ozpinar
| |
Collapse
|
45
|
Lee SY, McCarthy AM, Stohl H, Ibrahim S, Jeong C, Braverman LE, Ma W, He X, Mestman JH, Schuller KE, Jahreis KA, Pearce EN, Leung AM. Urinary Iodine, Perchlorate, and Thiocyanate Concentrations in U.S. Lactating Women. Thyroid 2017; 27:1574-1581. [PMID: 29130403 PMCID: PMC5734160 DOI: 10.1089/thy.2017.0158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Iodine is an essential micronutrient for thyroid hormone production. Adequate iodine intake and normal thyroid function are important during early development, and breastfed infants rely on maternal iodine excreted in breast milk for their iodine nutrition. The proportion of women in the United States of childbearing age with urinary iodine concentration (UIC) <50 μg/L has been increasing, and a subset of lactating women may have inadequate iodine intake. UIC may also be influenced by environmental exposure to perchlorate and thiocyanate, competitive inhibitors of iodine transport into thyroid, and lactating mammary glands. Data regarding UIC in U.S. lactating women are limited. To adequately assess the iodine sufficiency of lactating women and potential associations with environmental perchlorate and thiocyanate exposure, we conducted a multicenter, cross-sectional study of urinary iodine, perchlorate, and thiocyanate concentrations in healthy U.S. lactating women. METHODS Lactating women ≥18 years of age were recruited from three U.S. geographic regions: California, Massachusetts, and Ohio/Illinois from November 2008 to June 2016. Demographic information and multivitamin supplements use were obtained. Iodine, perchlorate, and thiocyanate levels were measured from spot urine samples. Correlations between urinary iodine, perchlorate, and thiocyanate levels were determined using Spearman's rank correlation. Multivariable regression models were used to assess predictors of urinary iodine, perchlorate, and thiocyanate levels, and UIC <100 μg/L. RESULTS A total of 376 subjects (≥125 from each geographic region) were included in the final analyses [mean (SD) age 31.1 (5.6) years, 37% white, 31% black, and 11% Hispanic]. Seventy-seven percent used multivitamin supplements, 5% reported active cigarette smoking, and 45% were exclusively breastfeeding. Median urinary iodine, perchlorate, and thiocyanate concentrations were 143 μg/L, 3.1 μg/L, and 514 μg/L, respectively. One-third of women had UIC <100 μg/L. Spot urinary iodine, perchlorate, and thiocyanate levels all significantly positively correlated to each other. No significant predictors of UIC, UIC <100 μg/L, or urinary perchlorate levels were identified. Smoking, race/ethnicity, and marital status were significant predictors of urinary thiocyanate levels. CONCLUSION Lactating women in three U.S. geographic regions are iodine sufficient with an overall median UIC of 143 μg/L. Given ubiquitous exposure to perchlorate and thiocyanate, adequate iodine nutrition should be emphasized, along with consideration to decrease these exposures in lactating women to protect developing infants.
Collapse
Affiliation(s)
- Sun Y. Lee
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, Massachusetts
| | - Alicia M. McCarthy
- Department of Obstetrics and Gynecology, Kaiser Permanente Northern California, Walnut Creek, California
| | - Hindi Stohl
- Department of Obstetrics and Gynecology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Sherrine Ibrahim
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christina Jeong
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, Massachusetts
| | - Lewis E. Braverman
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, Massachusetts
| | - Wendy Ma
- Wellesley College, Wellesley, Massachusetts
| | - Xuemei He
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, Massachusetts
| | - Jorge H. Mestman
- Department of Medicine and Department of Obstetrics and Gynecology, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Kristin E. Schuller
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, Massachusetts
| | - Katherine A. Jahreis
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, Massachusetts
| | - Elizabeth N. Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, Massachusetts
| | - Angela M. Leung
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine, Los Angeles, California
- Division of Endocrinology, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
46
|
Rubin R, Pearl M, Kharrazi M, Blount BC, Miller MD, Pearce EN, Valentin-Blasini L, DeLorenze G, Liaw J, Hoofnagle AN, Steinmaus C. Maternal perchlorate exposure in pregnancy and altered birth outcomes. ENVIRONMENTAL RESEARCH 2017; 158:72-81. [PMID: 28601764 PMCID: PMC5578729 DOI: 10.1016/j.envres.2017.05.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND At high medicinal doses perchlorate is known to decrease the production of thyroid hormone, a critical factor for fetal development. In a large and uniquely exposed cohort of pregnant women, we recently identified associations between environmental perchlorate exposures and decreased maternal thyroid hormone during pregnancy. Here, we investigate whether perchlorate might be associated with birthweight or preterm birth in the offspring of these women. METHODS Maternal urinary perchlorate, serum thyroid hormone concentrations, birthweight, gestational age, and urinary nitrate, thiocyanate, and iodide were collected in 1957 mother-infant pairs from San Diego County during 2000-2003, a period when the county's water supply was contaminated with perchlorate. Associations between perchlorate exposure and birth outcomes were examined using linear and logistic regression analyses adjusted for maternal age, weight, race/ethnicity, and other factors. RESULTS Perchlorate was not associated with birth outcomes in the overall population. However, in analyses confined to male infants, log10 maternal perchlorate concentrations were associated with increasing birthweight (β=143.1gm, p=0.01), especially among preterm births (β=829.1g, p<0.001). Perchlorate was associated with male preterm births ≥2500g (odds ratio=3.03, 95% confidence interval=1.09-8.40, p-trend=0.03). Similar associations were not seen in females. CONCLUSIONS This is the first study to identify associations between perchlorate and increasing birthweight. Further research is needed to explore the differences we identified related to infant sex, preterm birth, and other factors. Given that perchlorate exposure is ubiquitous, and that long-term impacts can follow altered birth outcomes, future research on perchlorate could have widespread public health importance.
Collapse
Affiliation(s)
- Rainbow Rubin
- School of Public Health, University of California, Berkeley, CA, USA
| | | | - Martin Kharrazi
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | - Benjamin C Blount
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark D Miller
- Western States Pediatric Environmental Health Specialty Unit, University of California, San Francisco, CA, USA
| | - Elizabeth N Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, MA, USA
| | - Liza Valentin-Blasini
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gerald DeLorenze
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Jane Liaw
- School of Public Health, University of California, Berkeley, CA, USA
| | - Andrew N Hoofnagle
- Departments of Lab Medicine and Medicine, University of Washington, Seattle, Washington, USA
| | - Craig Steinmaus
- School of Public Health, University of California, Berkeley, CA, USA; Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA.
| |
Collapse
|
47
|
Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, Grobman WA, Laurberg P, Lazarus JH, Mandel SJ, Peeters RP, Sullivan S. 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid 2017; 27:315-389. [PMID: 28056690 DOI: 10.1089/thy.2016.0457] [Citation(s) in RCA: 1415] [Impact Index Per Article: 176.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Thyroid disease in pregnancy is a common clinical problem. Since the guidelines for the management of these disorders by the American Thyroid Association (ATA) were first published in 2011, significant clinical and scientific advances have occurred in the field. The aim of these guidelines is to inform clinicians, patients, researchers, and health policy makers on published evidence relating to the diagnosis and management of thyroid disease in women during pregnancy, preconception, and the postpartum period. METHODS The specific clinical questions addressed in these guidelines were based on prior versions of the guidelines, stakeholder input, and input of task force members. Task force panel members were educated on knowledge synthesis methods, including electronic database searching, review and selection of relevant citations, and critical appraisal of selected studies. Published English language articles were eligible for inclusion. The American College of Physicians Guideline Grading System was used for critical appraisal of evidence and grading strength of recommendations. The guideline task force had complete editorial independence from the ATA. Competing interests of guideline task force members were regularly updated, managed, and communicated to the ATA and task force members. RESULTS The revised guidelines for the management of thyroid disease in pregnancy include recommendations regarding the interpretation of thyroid function tests in pregnancy, iodine nutrition, thyroid autoantibodies and pregnancy complications, thyroid considerations in infertile women, hypothyroidism in pregnancy, thyrotoxicosis in pregnancy, thyroid nodules and cancer in pregnant women, fetal and neonatal considerations, thyroid disease and lactation, screening for thyroid dysfunction in pregnancy, and directions for future research. CONCLUSIONS We have developed evidence-based recommendations to inform clinical decision-making in the management of thyroid disease in pregnant and postpartum women. While all care must be individualized, such recommendations provide, in our opinion, optimal care paradigms for patients with these disorders.
Collapse
Affiliation(s)
- Erik K Alexander
- 1 Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Elizabeth N Pearce
- 2 Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine , Boston, Massachusetts
| | - Gregory A Brent
- 3 Department of Medicine, VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Rosalind S Brown
- 4 Division of Endocrinology, Boston Children's Hospital , Harvard Medical School, Boston, Massachusetts
| | - Herbert Chen
- 5 Department of Surgery, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chrysoula Dosiou
- 6 Division of Endocrinology, Stanford University School of Medicine , Stanford, California
| | - William A Grobman
- 7 Department of Obstetrics and Gynecology, Northwestern University , Chicago, Illinois
| | - Peter Laurberg
- 8 Departments of Endocrinology & Clinical Medicine, Aalborg University Hospital , Aalborg, Denmark
| | - John H Lazarus
- 9 Institute of Molecular Medicine, Cardiff University , Cardiff, United Kingdom
| | - Susan J Mandel
- 10 Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Robin P Peeters
- 11 Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus Medical Center , Rotterdam, The Netherlands
| | - Scott Sullivan
- 12 Department of Obstetrics and Gynecology, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
48
|
de Souza JS, Kizys MML, da Conceição RR, Glebocki G, Romano RM, Ortiga-Carvalho TM, Giannocco G, da Silva IDCG, Dias da Silva MR, Romano MA, Chiamolera MI. Perinatal exposure to glyphosate-based herbicide alters the thyrotrophic axis and causes thyroid hormone homeostasis imbalance in male rats. Toxicology 2017; 377:25-37. [PMID: 27916585 DOI: 10.1016/j.tox.2016.11.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
Glyphosate-based herbicides (GBHs) are widely used in agriculture. Recently, several animal and epidemiological studies have been conducted to understand the effects of these chemicals as an endocrine disruptor for the gonadal system. The aim of the present study was to determine whether GBHs could also disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Female pregnant Wistar rats were exposed to a solution containing GBH Roundup®Transorb (Monsanto). The animals were divided into three groups (control, 5mg/kg/day or 50mg/kg/day) and exposed from gestation day 18 (GD18) to post-natal day 5 (PND5). Male offspring were euthanized at PND 90, and blood and tissues samples from the hypothalamus, pituitary, liver and heart were collected for hormonal evaluation (TSH-Thyroid stimulating hormone, T3-triiodothyronine and T4-thyroxine), metabolomic and mRNA analyses of genes related to thyroid hormone metabolism and function. The hormonal profiles showed decreased concentrations of TSH in the exposed groups, with no variation in the levels of the thyroid hormones (THs) T3 and T4 between the groups. Hypothalamus gene expression analysis of the exposed groups revealed a reduction in the expression of genes encoding deiodinases 2 (Dio2) and 3 (Dio3) and TH transporters Slco1c1 (former Oatp1c1) and Slc16a2 (former Mct8). In the pituitary, Dio2, thyroid hormone receptor genes (Thra1 and Thrb1), and Slc16a2 showed higher expression levels in the exposed groups than in the control group. Interestingly, Tshb gene expression did not show any difference in expression profile between the control and exposed groups. Liver Thra1 and Thrb1 showed increased mRNA expression in both GBH-exposed groups, and in the heart, Dio2, Mb, Myh6 (former Mhca) and Slc2a4 (former Glut4) showed higher mRNA expression in the exposed groups. Additionally, correlation analysis between gene expression and metabolomic data showed similar alterations as detected in hypothyroid rats. Perinatal exposure to GBH in male rats modified the HPT set point, with lower levels of TSH likely reflecting post-translational events. Several genes regulated by TH or involved in TH metabolism and transport presented varying degrees of gene expression alteration that were probably programmed during intrauterine exposure to GBHs and reflects in peripheral metabolism. In conclusion, the role of GBH exposure in HPT axis disruption should be considered in populations exposed to this herbicide.
Collapse
Affiliation(s)
- Janaina Sena de Souza
- Universidade Federal de São Paulo, Unifesp/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Laboratório de Endocrinologia Molecular e Translacional (LEMT), São Paulo, Brazil
| | - Marina Malta Letro Kizys
- Universidade Federal de São Paulo, Unifesp/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Laboratório de Endocrinologia Molecular e Translacional (LEMT), São Paulo, Brazil
| | - Rodrigo Rodrigues da Conceição
- Universidade Federal de São Paulo, Unifesp/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Laboratório de Endocrinologia Molecular e Translacional (LEMT), São Paulo, Brazil
| | - Gabriel Glebocki
- Universidade Federal de São Paulo, Unifesp/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Laboratório de Endocrinologia Molecular e Translacional (LEMT), São Paulo, Brazil
| | - Renata Marino Romano
- Universidade Estadual do Centro-Oeste, Departamento de Farmácia, Guarapuava, Brazil
| | - Tania Maria Ortiga-Carvalho
- Universidade Federal do Rio de Janeiro, UFRJ, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Endocrinologia Translacional, Rio de Janeiro, Brazil
| | - Gisele Giannocco
- Universidade Federal de São Paulo, Unifesp/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Laboratório de Endocrinologia Molecular e Translacional (LEMT), São Paulo, Brazil
| | | | - Magnus Regios Dias da Silva
- Universidade Federal de São Paulo, Unifesp/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Laboratório de Endocrinologia Molecular e Translacional (LEMT), São Paulo, Brazil
| | - Marco Aurélio Romano
- Universidade Estadual do Centro-Oeste, Departamento de Farmácia, Guarapuava, Brazil
| | - Maria Izabel Chiamolera
- Universidade Federal de São Paulo, Unifesp/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Laboratório de Endocrinologia Molecular e Translacional (LEMT), São Paulo, Brazil.
| |
Collapse
|
49
|
von Oettingen JE, Brathwaite TD, Carpenter C, Bonnell R, He X, Braverman LE, Pearce EN, Larco P, Larco NC, Jean-Baptiste E, Brown RS. Population Survey of Iodine Deficiency and Environmental Disruptors of Thyroid Function in Young Children in Haiti. J Clin Endocrinol Metab 2017; 102:644-651. [PMID: 27768855 DOI: 10.1210/jc.2016-2630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/18/2016] [Indexed: 11/19/2022]
Abstract
CONTEXT Iodine deficiency is the leading cause of preventable neurodevelopmental delay in children worldwide and a possible public health concern in Haiti. OBJECTIVE To determine the prevalence of iodine deficiency in Haitian young children and its influence by environmental factors. DESIGN Cross-sectional study, March through June 2015. SETTING Community churches in 3 geographical regions in Haiti. PARTICIPANTS 299 healthy Haitian children aged 9 months to 6 years; one-third each enrolled in a coastal, mountainous, and urban region. MAIN OUTCOME MEASURES Urinary iodide, serum thyrotropin (TSH), goiter assessment, and urinary perchlorate and thiocyanate. RESULTS Mean age was 3.3±1.6 years, with 51% female, median family income USD 30/week, and 16% malnutrition. Median urinary iodide levels were normal in coastal (145 μg/L, interquartile range [IQR] 97 to 241) and urban regions (187 μg/L, IQR 92 to 316), but revealed mild iodine deficiency in a mountainous region (89 μg/L, IQR 56 to 129), P < 0.0001. Grade 1 goiters were palpated in 2 children, but TSH values were normal. Urinary thiocyanate and perchlorate concentrations were not elevated. Predictors of higher urinary iodide included higher urinary thiocyanate and perchlorate, breastfeeding, and not living in a mountainous region. CONCLUSIONS Areas of mild iodine deficiency persist in Haiti's mountainous regions. Exposure to two well-understood environmental thyroid function disruptors is limited.
Collapse
Affiliation(s)
- Julia E von Oettingen
- Division of Endocrinology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | | | | | - Ric Bonnell
- Pediatric Emergency Medicine, Dell Children's Medical Center of Central Texas, Austin, Texas 78723
| | - Xuemei He
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Lewis E Braverman
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Elizabeth N Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Philippe Larco
- Fondation Haïtienne de Diabète et de Maladies Cardiovasculaires, Port au Prince HT6112, Haiti; and
| | - Nancy Charles Larco
- Fondation Haïtienne de Diabète et de Maladies Cardiovasculaires, Port au Prince HT6112, Haiti; and
| | - Eddy Jean-Baptiste
- Fondation Haïtienne de Diabète et de Maladies Cardiovasculaires, Port au Prince HT6112, Haiti; and
| | | |
Collapse
|
50
|
Gümüş Yılmaz G, Destanoğlu O. Simultaneous Determination of Different Anions in Milk Samples Using Ion Chromatography with Conductivity Detection. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2016. [DOI: 10.18596/jotcsa.287340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|