1
|
Luo H, Jiao Q, Shen C, Shao C, Xie J, Chen Y, Feng X, Zhang X. Unraveling the roles of endoplasmic reticulum-associated degradation in metabolic disorders. Front Endocrinol (Lausanne) 2023; 14:1123769. [PMID: 37455916 PMCID: PMC10339828 DOI: 10.3389/fendo.2023.1123769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Misfolded proteins retained in the endoplasmic reticulum cause many human diseases. ER-associated degradation (ERAD) is one of the protein quality and quantity control system located at ER, which is responsible for translocating the misfolded proteins or properly folded but excess proteins out of the ER for proteasomal degradation. Recent studies have revealed that mice with ERAD deficiency in specific cell types exhibit impaired metabolism homeostasis and metabolic diseases. Here, we highlight the ERAD physiological functions in metabolic disorders in a substrate-dependent and cell type-specific manner.
Collapse
Affiliation(s)
- Hui Luo
- *Correspondence: Hui Luo, ; Xingwei Zhang,
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Wyniger L, Beuret N, Rutishauser J, Seelig E. Diagnosis and Treatment of Hereditary Central Diabetes Insipidus in a Swiss Family With a Mutation in the AVP Gene. JCEM CASE REPORTS 2023; 1:luac023. [PMID: 37908243 PMCID: PMC10578377 DOI: 10.1210/jcemcr/luac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 11/02/2023]
Abstract
Hereditary central diabetes insipidus (CDI) is a genetic disorder characterized by polydipsia and polyuria. Most known mutations are located in the arginine-vasopressin (AVP) gene. Here, we describe a Swiss family with an autosomal dominant mutation in the AVP gene region encoding for the carrier protein neurophysin II (P55R). In addition, we discuss the algorithm for diagnosing and treating patients with hereditary CDI based on this Swiss family.
Collapse
Affiliation(s)
- Lorena Wyniger
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
| | - Nicole Beuret
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Jonas Rutishauser
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
| | - Eleonora Seelig
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- University Clinic of Medicine, Cantonal Hospital Baselland, 4410 Liestal, Switzerland
| |
Collapse
|
3
|
Tomkins M, Lawless S, Martin-Grace J, Sherlock M, Thompson CJ. Diagnosis and Management of Central Diabetes Insipidus in Adults. J Clin Endocrinol Metab 2022; 107:2701-2715. [PMID: 35771962 PMCID: PMC9516129 DOI: 10.1210/clinem/dgac381] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/19/2022]
Abstract
Central diabetes insipidus (CDI) is a clinical syndrome which results from loss or impaired function of vasopressinergic neurons in the hypothalamus/posterior pituitary, resulting in impaired synthesis and/or secretion of arginine vasopressin (AVP). AVP deficiency leads to the inability to concentrate urine and excessive renal water losses, resulting in a clinical syndrome of hypotonic polyuria with compensatory thirst. CDI is caused by diverse etiologies, although it typically develops due to neoplastic, traumatic, or autoimmune destruction of AVP-synthesizing/secreting neurons. This review focuses on the diagnosis and management of CDI, providing insights into the physiological disturbances underpinning the syndrome. Recent developments in diagnostic techniques, particularly the development of the copeptin assay, have improved accuracy and acceptability of the diagnostic approach to the hypotonic polyuria syndrome. We discuss the management of CDI with particular emphasis on management of fluid intake and pharmacological replacement of AVP. Specific clinical syndromes such as adipsic diabetes insipidus and diabetes insipidus in pregnancy as well as management of the perioperative patient with diabetes insipidus are also discussed.
Collapse
Affiliation(s)
- Maria Tomkins
- Academic Department of Endocrinology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarah Lawless
- Academic Department of Endocrinology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Julie Martin-Grace
- Academic Department of Endocrinology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mark Sherlock
- Academic Department of Endocrinology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Chris J Thompson
- Correspondence: Chris Thompson, Academic Department of Endocrinology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
4
|
He Y, Tan J, Han X. High-Resolution Computer Tomography Image Features of Lungs for Patients with Type 2 Diabetes under the Faster-Region Recurrent Convolutional Neural Network Algorithm. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4147365. [PMID: 35509859 PMCID: PMC9061003 DOI: 10.1155/2022/4147365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022]
Abstract
The objective of this study was to adopt the high-resolution computed tomography (HRCT) technology based on the faster-region recurrent convolutional neural network (Faster-RCNN) algorithm to evaluate the lung infection in patients with type 2 diabetes, so as to analyze the application value of imaging features in the assessment of pulmonary disease in type 2 diabetes. In this study, 176 patients with type 2 diabetes were selected as the research objects, and they were divided into different groups based on gender, course of disease, age, glycosylated hemoglobin level (HbA1c), 2 h C peptide (2 h C-P) after meal, fasting C peptide (FC-P), and complications. The research objects were performed with HRCT scan, and the Faster-RCNN algorithm model was built to obtain the imaging features. The relationships between HRCT imaging features and 2 h C-P, FC-P, HbA1c, gender, course of disease, age, and complications were analyzed comprehensively. The results showed that there were no significant differences in HRCT scores between male and female patients, patients of various ages, and patients with different HbA1c contents (P > 0.05). As the course of disease and complications increased, HRCT scores of patients increased obviously (P < 0.05). The HRCT score decreased dramatically with the increase in the contents of 2 h C-P and FC-P after the meal (P < 0.05). In addition, the results of the Spearman rank correlation analysis showed that the course of disease and complications were positively correlated with the HRCT scores, while the 2 h C-P and FC-P levels after meal were negatively correlated with the HRCT scores. The receiver operating curve (ROC) showed that the accuracy, specificity, and sensitivity of HRCT imaging based on Faster-RCNN algorithm were 90.12%, 90.43%, and 83.64%, respectively, in diagnosing lung infection of patients with type 2 diabetes. In summary, the HRCT imaging features based on the Faster-RCNN algorithm can provide effective reference information for the diagnosis and condition assessment of lung infection in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Yumei He
- Department of General Medicine, Affiliated Hospital of Yan'an University, Yan'an, 716000 Shaanxi, China
| | - Juan Tan
- Department of Traditional Chinese Medicine, Affiliated Hospital of Yan'an University, Yan'an, 716000 Shaanxi, China
| | - Xiuping Han
- Department of General Medicine, Affiliated Hospital of Yan'an University, Yan'an, 716000 Shaanxi, China
| |
Collapse
|
5
|
Abstract
Diabetes insipidus (DI) is a disorder characterized by a high hypotonic urinary output of more than 50ml per kg body weight per 24 hours, with associated polydipsia of more than 3 liters a day [1,2]. Central DI results from inadequate secretion and usually deficient synthesis of Arginine vasopressin (AVP) in the hypothalamus or pituitary gland. Besides central DI further underlying etiologies of DI can be due to other primary forms (renal origin) or secondary forms of polyuria (resulting from primary polydipsia). All these forms belong to the Polyuria Polydipsia Syndrom (PPS). In most cases central and nephrogenic DI are acquired, but there are also congenital forms caused by genetic mutations of the AVP gene (central DI) [3] or by mutations in the gene for the AVP V2R or the AQP2 water channel (nephrogenic DI) [4]. Primary polydipsia (PP) as secondary form of polyuria includes an excessive intake of large amounts of fluid leading to polyuria in the presence of intact AVP secretion and appropriate antidiuretic renal response. Differentiation between the three mentioned entities is difficult [5], especially in patients with Primary polydipsia or partial, mild forms of DI [1,6], but different tests for differential diagnosis, most recently based on measurement of copeptin, and a thorough medical history mostly lead to the correct diagnosis. This is important since treatment strategies vary and application of the wrong treatment can be dangerous [7]. Treatment of central DI consists of fluid management and drug therapy with the synthetic AVP analogue Desmopressin (DDAVP), that is used as nasal or oral preparation in most cases. Main side effect can be dilutional hyponatremia [8]. In this review we will focus on central diabetes insipidus and describe the prevalence, the clinical manifestations, the etiology as well as the differential diagnosis and management of central diabetes insipidus in the out- and inpatient setting.
Collapse
|
6
|
Alvelos MI, Francisco Â, Gomes L, Paiva I, Melo M, Marques P, Gama-de-Sousa S, Carreiro S, Quintela T, Gonçalves I, Lemos MC. Familial neurohypophyseal diabetes insipidus: clinical, genetic and functional studies of novel mutations in the arginine vasopressin gene. Pituitary 2021; 24:400-411. [PMID: 33433888 DOI: 10.1007/s11102-020-01119-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Familial neurohypophyseal diabetes insipidus (FNDI) is a rare disorder characterized by childhood-onset progressive polyuria and polydipsia due to mutations in the arginine vasopressin (AVP) gene. The aim of the study was to describe the clinical and molecular characteristics of families with neurohypophyseal diabetes insipidus. METHODS Five Portuguese families with autosomal dominant FNDI underwent sequencing of the AVP gene and the identified mutations were functionally characterized by in vitro studies. RESULTS Three novel and two recurrent heterozygous mutations were identified in the AVP gene. These consisted of one initiation codon mutation in the signal peptide coding region (c.2T > C, p.Met1?), three missense mutations in the neurophysin II (NPII) coding region (c.154T > C, p.Cys52Arg; c.289C > G, p.Arg97Gly; and c.293G > C, p.Cys98Ser), and one nonsense mutation in the NPII coding region (c.343G > T, p.Glu115Ter). In vitro transfection of neuronal cells with expression vectors containing each mutation showed that the mutations resulted in intracellular retention of the vasopressin prohormone. Patients showed progressive symptoms of polyuria and polydipsia, but with wide variability in severity and age at onset. No clear genotype-phenotype correlation was observed. CONCLUSION The intracellular accumulation of mutant vasopressin precursors supports the role of cellular toxicity of the mutant proteins in the etiology of the disorder and explains the progressive onset of the disorder. These findings further expand the AVP mutational spectrum in FNDI and contribute to the understanding of the molecular pathogenic mechanisms involved in FNDI.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilha, Portugal
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ângela Francisco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilha, Portugal
| | - Leonor Gomes
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, 3000-075, Coimbra, Portugal
| | - Isabel Paiva
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, 3000-075, Coimbra, Portugal
| | - Miguel Melo
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, 3000-075, Coimbra, Portugal
| | - Pedro Marques
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa, 1099-023, Lisboa, Portugal
| | - Susana Gama-de-Sousa
- Serviço de Pediatria, Centro Hospitalar do Médio Ave, Unidade de V. N. Famalicão, 4761-917, Vila Nova de Famalicão, Portugal
| | - Sofia Carreiro
- Serviço de Patologia Clínica, Instituto Português de Oncologia de Coimbra, 3000-075, Coimbra, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilha, Portugal
| | - Isabel Gonçalves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilha, Portugal
| | - Manuel Carlos Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilha, Portugal.
| |
Collapse
|