1
|
Lasisi-Sholola AS, Hammed SO, Ajike RA, Akhigbe RE, Afolabi OA. Estrogen replacement therapy reverses spatial memory loss and pyramidal cell neurodegeneration in the prefrontal cortex of lead-exposed ovariectomized Wistar rats. Curr Res Toxicol 2024; 7:100200. [PMID: 39583742 PMCID: PMC11582547 DOI: 10.1016/j.crtox.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Background Although menopause is a component of chronological aging, it may be induced by exposure to heavy metals like lead. Interestingly, lead exposure, just like the postmenopausal state, has been associated with spatial memory loss and neurodegeneration; however, the impact of hormone replacement therapy (HRT) on menopause and lead-induced spatial memory loss and neurodegeneration is yet to be reported. Aim The present study investigated the effect and associated mechanism of HRT on ovariectomized-driven menopausal state and lead exposure-induced spatial memory loss and neurodegeneration. Materials and methods Thirty adult female Wistar rats were randomized into 6 groups (n = 5 rats/group); the sham-operated vehicle-treated, ovariectomized (OVX), OVX + HRT, lead-exposed, OVX + lead, and OVX + Lead + HRT groups. Treatment was daily via gavage and lasted for 28 days. Results Ovariectomy and lead exposure impaired spatial memory deficit evidenced by a significant reduction in novel arm entry, time spent in the novel arm, alternation, time exploring novel and familiar objects, and discrimination index. These findings were accompanied by a marked distortion in the histology of the prefrontal cortex, and a decline in serum dopamine level and pyramidal neurons. In addition, ovariectomy and lead exposure induced metabolic disruption (as depicted by a marked rise in lactate level and lactate dehydrogenase and creatinine kinase activities), oxidative stress (evidenced by a significant increase in MDA level, and decrease in GSH level, and SOD and catalase activities), inflammation (as shown by significant upregulation of myeloperoxidase activity, and TNF-α and IL-1β), and apoptosis (evidenced by a rise in caspase 3 activity) of the prefrontal cortex. The observed biochemical and histological perturbations were attenuated by HRT. Conclusions This study revealed that HRT attenuated ovariectomy and lead-exposure-induced spatial memory deficit and pyramidal neurodegeneration by suppressing oxidative stress, inflammation, and apoptosis of the prefrontal cortex.
Collapse
Affiliation(s)
- Abiodun Shukrat Lasisi-Sholola
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Sodiq Opeyemi Hammed
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Richard Adedamola Ajike
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Oladele Ayobami Afolabi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
2
|
Mading A, Chotritthirong Y, Chulikhit Y, Daodee S, Boonyarat C, Khamphukdee C, Sukketsiri W, Kwankhao P, Pitiporn S, Monthakantirat O. Effectiveness of Tri-Kaysorn-Mas Extract in Ameliorating Cognitive-like Behavior Deficits in Ovariectomized Mice via Activation of Multiple Mechanisms. Pharmaceuticals (Basel) 2024; 17:1182. [PMID: 39338344 PMCID: PMC11435318 DOI: 10.3390/ph17091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Postmenopausal women have a higher probability of experiencing cognitive alterations compared to men, suggesting that the decline in female hormones may contribute to cognitive deterioration. Thailand traditionally uses Tri-Kaysorn-Mas (TKM), a blend of three medicinal herbs, as a tonic to stimulate appetite and relieve dyspepsia. Due to its antioxidant and anti-acetylcholinesterase activities, we investigated the effects of TKM (50 and 100 mg/kg/day, p.o., for 8 weeks) on cognitive deficits and their underlying causes in an ovariectomized (OVX) mouse model of menopause. OVX mice showed cognitive impairment in the Y-maze, novel object recognition task (NORT), and Morris water maze (MWM) behavioral tests, along with atrophic changes to the uterus, altered levels of serum 17β-estradiol, and down-regulated expression of estrogen receptors (ERα and ERβ). These behavioral effects were reversed by TKM. TKM decreased malondialdehyde (MDA) levels and mitigated oxidative stress in the brain by enhancing the activity of superoxide dismutase (SOD) and catalase (CAT) and by up-regulating the antioxidant-related gene Nrf2 while down-regulating Keap1. TKM also counteracted OVX-induced neurodegeneration by enhancing the expression of the neurogenesis-related genes BDNF and CREB. The results indicate that TKM extract alleviates oxidative brain damage and neurodegeneration while enhancing cognitive behavior in OVX mice, significantly improving cognitive deficiencies related to menopause/ovariectomy through multiple targets.
Collapse
Affiliation(s)
- Abdulwaris Mading
- Graduate School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.M.); (Y.C.)
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (S.D.); (C.B.)
| | - Yutthana Chotritthirong
- Graduate School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.M.); (Y.C.)
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (S.D.); (C.B.)
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (S.D.); (C.B.)
| | - Supawadee Daodee
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (S.D.); (C.B.)
| | - Chantana Boonyarat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (S.D.); (C.B.)
| | - Charinya Khamphukdee
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Kaen University, Khon Kaen 40002, Thailand;
| | - Wanida Sukketsiri
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Pakakrong Kwankhao
- Department of Pharmacy, Chao Phya Abhaibhubejhr Hospital, Ministry of Public Health, Prachinburi 25000, Thailand; (P.K.); (S.P.)
| | - Supaporn Pitiporn
- Department of Pharmacy, Chao Phya Abhaibhubejhr Hospital, Ministry of Public Health, Prachinburi 25000, Thailand; (P.K.); (S.P.)
| | - Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (S.D.); (C.B.)
| |
Collapse
|
3
|
Rishabh, Rohilla M, Bansal S, Bansal N, Chauhan S, Sharma S, Goyal N, Gupta S. Estrogen signalling and Alzheimer's disease: Decoding molecular mechanisms for therapeutic breakthrough. Eur J Neurosci 2024; 60:3466-3490. [PMID: 38726764 DOI: 10.1111/ejn.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 07/06/2024]
Abstract
In females, Alzheimer's disease (AD) incidences increases as compared to males due to estrogen deficiency after menopause. Estrogen therapy is the mainstay therapy for menopause and associated complications. Estrogen, a hormone with multifaceted physiological functions, has been implicated in AD pathophysiology. Estrogen plays a crucial role in amyloid precursor protein (APP) processing and overall neuronal health by regulating various factors such as brain-derived neurotrophic factor (BDNF), intracellular calcium signalling, death domain-associated protein (Daxx) translocation, glutamatergic excitotoxicity, Voltage-Dependent Anion Channel, Insulin-Like Growth Factor 1 Receptor, estrogen-metabolising enzymes and apolipoprotein E (ApoE) protein polymorphisms. All these factors impact the physiology of postmenopausal women. Estrogen replacement therapies play an important treatment strategy to prevent AD after menopause. However, use of these therapies may lead to increased risks of breast cancer, venous thromboembolism and cardiovascular disease. Various therapeutic approaches have been used to mitigate the effects of estrogen on AD. These include hormone replacement therapy, Selective Estrogen Receptor Modulators (SERMs), Estrogen Receptor Beta (ERβ)-Selective Agonists, Transdermal Estrogen Delivery, Localised Estrogen Delivery, Combination Therapies, Estrogen Metabolism Modulation and Alternative Estrogenic Compounds like genistein from soy, a notable phytoestrogen from plant sources. However, mechanism via which these approaches modulate AD in postmenopausal women has not been explained earlier thoroughly. Present review will enlighten all the molecular mechanisms of estrogen and estrogen replacement therapies in AD. Along-with this, the association between estrogen, estrogen-metabolising enzymes and ApoE protein polymorphisms will also be discussed in postmenopausal AD.
Collapse
Affiliation(s)
- Rishabh
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Manni Rohilla
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Nitin Bansal
- Department of Pharmacy, Chaudhary Bansilal University, Bhiwani, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sheenam Sharma
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Navjyoti Goyal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| |
Collapse
|
4
|
Creinin MD, Cagnacci A, Spaczyński RZ, Stute P, Chabbert-Buffet N, Korver T, Simoncini T. Experts' view on the role of oestrogens in combined oral contraceptives: emphasis on oestetrol (E4). Front Glob Womens Health 2024; 5:1395863. [PMID: 38655395 PMCID: PMC11035732 DOI: 10.3389/fgwh.2024.1395863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction The evolution of contraception has been crucial for public health and reproductive well-being. Over the past 60 years, combined oral contraceptives (COCs) have remained an important part of the contraceptive landscape worldwide; continued development has worked toward maintaining efficacy and improving safety. Methods Seven global experts convened to discuss the clinical relevance of the oestrogen in COCs, focusing on the impact of the new oestrogen, oestetrol (E4). Participants then commented through an online forum on the summary content and other participants' feedback. We prepared this report to describe the experts' views, their follow-up from the open forum and the evidence supporting their views. Results Ethinylestradiol (EE) and oestradiol (E2) affect receptors similarly whereas E4 has differential effects, especially in the liver and breast. Adequate oestrogen doses in COCs ensure regular bleeding and user acceptability. EE and E4 have longer half-lives than E2; accordingly, COCs with EE and E4 offer more predictable bleeding than those with E2. Oestrogen type and progestin influence VTE risk; E2 poses a lower risk than EE; although promising, E4/DRSP VTE risk is lacking population-based data. COCs alleviate menstrual symptoms, impact mental health, cognition, libido, skin, and bone health. Conclusion Oestrogens play an important role in the contraceptive efficacy, bleeding patterns, and overall tolerability/safety of COCs. Recent studies exploring E4 combined with DRSP show promising results compared to traditional formulations, but more definitive conclusions await further research.
Collapse
Affiliation(s)
- M. D. Creinin
- Department of Obstetrics and Gynecology, University of California, Davis, Sacramento, CA, United States
| | - A. Cagnacci
- Academic Unit of Obstetrics and Gynecology, DINOGMI, IRCCS-Azienda Ospedaliera Universitaria San Martino di Genova, Genova, Italy
| | - R. Z. Spaczyński
- Collegium Medicum, University of Zielona Gora, Zielona Gora, Poland
| | - P. Stute
- Department of Obstetrics and Gynecology, Bern University Hospital, Bern, Switzerland
| | - N. Chabbert-Buffet
- Gynécologie—Obstétrique et Médecine de la Reproduction—Maternité, Hospital Tenon, Paris, France
| | - T. Korver
- Reprovision Clinical Consultancy, Oss, Netherlands
| | - T. Simoncini
- Division of Obstetrics and Gynecology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
5
|
Nerattini M, Jett S, Andy C, Carlton C, Zarate C, Boneu C, Battista M, Pahlajani S, Loeb-Zeitlin S, Havryulik Y, Williams S, Christos P, Fink M, Brinton RD, Mosconi L. Systematic review and meta-analysis of the effects of menopause hormone therapy on risk of Alzheimer's disease and dementia. Front Aging Neurosci 2023; 15:1260427. [PMID: 37937120 PMCID: PMC10625913 DOI: 10.3389/fnagi.2023.1260427] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Despite a large preclinical literature demonstrating neuroprotective effects of estrogen, use of menopausal hormone therapy (HT) for Alzheimer's disease (AD) risk reduction has been controversial. Herein, we conducted a systematic review and meta-analysis of HT effects on AD and dementia risk. Methods Our systematic search yielded 6 RCT reports (21,065 treated and 20,997 placebo participants) and 45 observational reports (768,866 patient cases and 5.5 million controls). We used fixed and random effect meta-analysis to derive pooled relative risk (RR) and 95% confidence intervals (C.I.) from these studies. Results Randomized controlled trials conducted in postmenopausal women ages 65 and older show an increased risk of dementia with HT use compared with placebo [RR = 1.38, 95% C.I. 1.16-1.64, p < 0.001], driven by estrogen-plus-progestogen therapy (EPT) [RR = 1.64, 95% C.I. 1.20-2.25, p = 0.002] and no significant effects of estrogen-only therapy (ET) [RR = 1.19, 95% C.I. 0.92-1.54, p = 0.18]. Conversely, observational studies indicate a reduced risk of AD [RR = 0.78, 95% C.I. 0.64-0.95, p = 0.013] and all-cause dementia [RR = .81, 95% C.I. 0.70-0.94, p = 0.007] with HT use, with protective effects noted with ET [RR = 0.86, 95% C.I. 0.77-0.95, p = 0.002] but not with EPT [RR = 0.910, 95% C.I. 0.775-1.069, p = 0.251]. Stratified analysis of pooled estimates indicates a 32% reduced risk of dementia with midlife ET [RR = 0.685, 95% C.I. 0.513-0.915, p = 0.010] and non-significant reductions with midlife EPT [RR = 0.775, 95% C.I. 0.474-1.266, p = 0.309]. Late-life HT use was associated with increased risk, albeit not significant [EPT: RR = 1.323, 95% C.I. 0.979-1.789, p = 0.069; ET: RR = 1.066, 95% C.I. 0.996-1.140, p = 0.066]. Discussion These findings support renewed research interest in evaluating midlife estrogen therapy for AD risk reduction.
Collapse
Affiliation(s)
- Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Michael Battista
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Loeb-Zeitlin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Yelena Havryulik
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Paul Christos
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Matthew Fink
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Neurology and Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
6
|
Chiu HY, Chang HT, Chan PC, Chiu PY. Cholesterol Levels, Hormone Replacement Therapy, and Incident Dementia among Older Adult Women. Nutrients 2023; 15:4481. [PMID: 37892556 PMCID: PMC10610485 DOI: 10.3390/nu15204481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Previous studies revealed that hormone replacement therapy (HRT) probably has a protective effect for preventing dementia in post-menopausal women. However, the results were still controversial. The association between cholesterol levels and incident dementia in older women is not fully understood either. We conducted a retrospective analysis on a cohort of non-demented women aged older than 50 years, which was registered in the History-based Artificial Intelligence Clinical Dementia Diagnostic System database from September 2015 to August 2021. We followed this cohort longitudinally to examine the rates of conversion to dementia. Using a Cox regression model, we investigated the impact of the quartile of total cholesterol (TC) levels on incident dementia, adjusting for age, sex, education, neuropsychiatric symptoms, neuropsychological assessments, HRT, as well as various vascular risk factors and medications. We examined a cohort of 787 participants, comprising 539 (68.5%) individuals who did not develop dementia (non-converters). Among these non-converters, 68 individuals (12.6%) were treated with HRT. By contrast, there were 248 (31.5%) who did develop dementia (converters). Among the converters, 28 individuals (11.3%) were treated with HRT. The average follow-up durations were 2.9 ± 1.5 and 3.3 ± 1.6 years for non-converters and converters, respectively. Compared to the lowest quartile of TC levels (<153), the hazard ratios (HR) for converting to dementia were 0.61, 0.58, and 0.58 for the second (153-176), third (177-201), and highest (>201) quartiles, respectively (all p < 0.05). However, the low-density lipoprotein cholesterol (LDL-C) level and HRT did not alter the rate of conversion to dementia. In conclusion, the lowest quartile of TC increased incident dementia in post-menopausal women without dementia; however, HRT did not contribute to conversion to dementia. Some studies suggest that post-menopausal women who have reduced estrogen levels might have an increased risk of Alzheimer's disease if they also have high cholesterol. Nonetheless, the evidence is inconclusive, as not all studies support this finding. The "Lower LDL-C is better" strategy for preventing cardiac vascular disease should be re-examined for the possible serial adverse effects of new onset dementia due to very low cholesterol levels.
Collapse
Affiliation(s)
- Huei-Ying Chiu
- Department of Obstetrics and Gynecology, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Hsin-Te Chang
- Department of Psychology, College of Science, Chung Yuan Christian University, Taoyuan 320, Taiwan;
| | - Po-Chi Chan
- Department of Neurology, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Department of Applied Mathematics, Tunghai University, Taichung 407, Taiwan
| |
Collapse
|
7
|
Zhu J, Zhou Y, Jin B, Shu J. Role of estrogen in the regulation of central and peripheral energy homeostasis: from a menopausal perspective. Ther Adv Endocrinol Metab 2023; 14:20420188231199359. [PMID: 37719789 PMCID: PMC10504839 DOI: 10.1177/20420188231199359] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Estrogen plays a prominent role in regulating and coordinating energy homeostasis throughout the growth, development, reproduction, and aging of women. Estrogen receptors (ERs) are widely expressed in the brain and nearly all tissues of the body. Within the brain, central estrogen via ER regulates appetite and energy expenditure and maintains cell glucose metabolism, including glucose transport, aerobic glycolysis, and mitochondrial function. In the whole body, estrogen has shown beneficial effects on weight control, fat distribution, glucose and insulin resistance, and adipokine secretion. As demonstrated by multiple in vitro and in vivo studies, menopause-related decline of circulating estrogen may induce the disturbance of metabolic signals and a significant decrease in bioenergetics, which could trigger an increased incidence of late-onset Alzheimer's disease, type 2 diabetes mellitus, hypertension, and cardiovascular diseases in postmenopausal women. In this article, we have systematically reviewed the role of estrogen and ERs in body composition and lipid/glucose profile variation occurring with menopause, which may provide a better insight into the efficacy of hormone therapy in maintaining energy metabolic homeostasis and hold a clue for development of novel therapeutic approaches for target tissue diseases.
Collapse
Affiliation(s)
- Jing Zhu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yier Zhou
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bihui Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Shu
- Reproductive Medicine Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
8
|
Hao W, Fu C, Dong C, Zhou C, Sun H, Xie Z, Zhu D. Age at menopause and all-cause and cause-specific dementia: a prospective analysis of the UK Biobank cohort. Hum Reprod 2023; 38:1746-1754. [PMID: 37344154 PMCID: PMC10663050 DOI: 10.1093/humrep/dead130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
STUDY QUESTION Are there associations between natural or surgical menopause and incident dementia by age at menopause? SUMMARY ANSWER Compared to age at menopause of 46-50 years, earlier natural menopause (≤40 and 41-45 years) was related to higher risk of all-cause dementia, while a U-shape relationship was observed between age at surgical menopause and risk of dementia. WHAT IS KNOWN ALREADY Menopause marks the end of female reproductive period. Age at menopause reflects the length of exposure to endogenous estrogen. Evidence on the association between age at natural, surgical menopause, and risk of dementia has been inconsistent. STUDY DESIGN, SIZE, DURATION A population-based cohort study involving 160 080 women who participated in the UK Biobank study. PARTICIPANTS/MATERIALS, SETTING, METHODS Women with no dementia at baseline, and had no missing data on key exposure variables and covariates were included. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% CIs on the association of categorical menopause age with incident all-cause dementia, Alzheimer's disease (AD) and vascular dementia (VD). Restricted cubic splines were used to model the non-linear relationship between continuous age at natural, surgical menopause, and risk of dementia. In addition, we analyzed the interaction effect of ever-used menopausal hormone therapy (MHT) at baseline, income level, leisure activities, and age at menopause on risk of dementia. MAIN RESULTS AND THE ROLE OF CHANCE Compared to women with age at menopause of 46-50 years, women with earlier natural menopause younger than 40 years (1.36, 1.01-1.83) and 41-45 years (1.19, 1.03-1.39) had a higher risk of all-cause dementia, while late natural menopause >55 years was linked to lower risk of dementia (0.83, 0.71-0.98). Compared to natural menopause, surgical menopause was associated with 10% higher risk of dementia (1.10, 0.98-1.24). A U-shape relationship was observed between surgical menopause and risk of dementia. Women with surgical menopause before age 40 years (1.94, 1.38-2.73) and after age 55 years (1.65, 1.21-2.24) were both linked to increased risk of all-cause dementia. Women with early natural menopause without ever taking MHT at baseline had an increased risk of AD. Also, in each categorized age at the menopause level, higher income level or higher number of leisure activities was linked to a lowers risk of dementia. LIMITATIONS, REASONS FOR CAUTION Menopausal age was based on women's self-report, which might cause recall bias. WIDER IMPLICATION OF THE FINDINGS Women who experienced natural menopause or had surgical menopause at an earlier age need close monitoring and engagement for preventive health measures to delay the development of dementia. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Start-up Foundation for Scientific Research in Shandong University (202099000066), Science Fund Program for Excellent Young Scholars of Shandong Provence (Overseas) (2022HWYQ-030), and the National Natural Science Foundation of China (82273702). There are no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Wenting Hao
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- NHC Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| | - Chunying Fu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Caiyun Dong
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunmiao Zhou
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huizi Sun
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ziwei Xie
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongshan Zhu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Ali N, Sohail R, Jaffer SR, Siddique S, Kaya B, Atowoju I, Imran A, Wright W, Pamulapati S, Choudhry F, Akbar A, Khawaja UA. The Role of Estrogen Therapy as a Protective Factor for Alzheimer's Disease and Dementia in Postmenopausal Women: A Comprehensive Review of the Literature. Cureus 2023; 15:e43053. [PMID: 37680393 PMCID: PMC10480684 DOI: 10.7759/cureus.43053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
The complete cessation of menstruation for 12 months with associated vasomotor symptoms is termed menopause. Apart from playing a role in reproduction, estrogen significantly affects the central nervous system (CNS). Population-based studies highlighted a substantial difference in the prevalence of dementia between men and women, with Alzheimer-associated dementia being more prevalent in women, indicating that estrogen deficiency might be a risk factor for neurodegenerative diseases. Patients with dementia experience a progressive decline in neurocognitive function, beginning with short-term memory loss that progresses to long-term memory loss and the inability to perform everyday activities, leading ultimately to death. There is currently no cure for dementia, so preventing or slowing the disease's progression is paramount. Accordingly, researchers have widely studied the role of estrogen as a neuroprotective agent. Estrogen prevents dementia by augmenting Hippocampal and prefrontal cortex function, reducing neuroinflammation, preventing degradation of estrogen receptors, decreasing oxidative damage to the brain, and increasing cholinergic and serotonergic function. According to the window phase hypothesis, estrogen's effect on preventing dementia is more pronounced if therapy is started early, during the first five years of menopause. Other studies like The Woman's Health Initiative Memory Study (WHIMS) showed unfavorable effects of estrogen on the brain. This review aims to establish an understanding of the currently available data on estrogen's effect on neurodegeneration, namely, dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- Noor Ali
- Obstetrics and Gynecology, Thumbay University Hospital, Ajman, ARE
- General Physician, Dubai Medical College, DXB, ARE
| | - Rohab Sohail
- Internal Medicine, Quaid-e-Azam Medical College, Bahawalpur, PAK
| | | | - Sadia Siddique
- Gastroenterology, Blackpool Victoria Hospital National Health Services (NHS) Foundation Trust, Blackpool, GBR
| | - Berfin Kaya
- Obstetrics and Gynaecology, Izmir Ataturk Research and Training Hospital, Izmir, TUR
- Obstetrics and Gynaecology, Izmir Kâtip Celebi University, Faculty of Medicine, Izmir, TUR
| | - Inioluwa Atowoju
- Obstetrics and Gynecology, Kharkiv National Medical University, Kharkiv, UKR
| | - Alizay Imran
- Surgery, Windsor University School of Medicine, Chicago, USA
| | - Whitney Wright
- Obstetrics and Gynecology, Texila American University, Georgetown, GUY
| | - Spandana Pamulapati
- Obstetrics and Gynecology, Alluri Sita Rama Raju Academy of Medical Sciences, Eluru, IND
| | - Faiza Choudhry
- Medicine and Surgery, Liaquat University of Medical and Health Sciences, Sindh, PAK
| | - Anum Akbar
- Pediatrics, University of Nebraska Medical Center, Omaha, USA
| | - Uzzam Ahmed Khawaja
- Pulmonary and Critical Care Medicine, Jinnah Medical and Dental College, Karachi, PAK
- Clinical and Translational Research, Dr Ferrer BioPharma, South Miami, USA
| |
Collapse
|
10
|
Liu X, Wang X, Zhang H, Pei M, Li N. Relationship between digital exclusion and cognitive impairment in Chinese adults. Front Aging Neurosci 2023; 15:1194348. [PMID: 37465320 PMCID: PMC10350515 DOI: 10.3389/fnagi.2023.1194348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Objective We aimed to evaluate the relationship between digital exclusion, such as neither mobile payments nor WeChat use, and cognitive impairment in Chinese individuals aged 45 and older. Methods A population-based cross-sectional study utilizing data from the fourth national survey of the China Health and Retirement Longitudinal Study (CHARLS). In the fourth wave of CHARLS, 10,325 participants aged 45 and older with complete information were included in this analysis. Self-reported mobile payments and WeChat usage constituted our exposure. Cognitive impairment was the primary outcome. Univariate and multivariate logistic regression were used to assess the relationships between cognitive impairment risk and digital exclusion. Results Data were analyzed from 10,325 participants [mean (SD) age, 60.3 (9.1) years; 44.8% women], including 1,232 individuals with cognitive impairment and 9,093 cognitively normal individuals. The overall proportion of users who did not use either mobile payment or WeChat and those who only used WeChat were 81.3 and 6.7%, for cognitively impaired individuals 95.0 and 3.1%, and for cognitively normal individuals 79.5 and 7.2% [neither WeChat nor mobile payments vs. control unadjusted odds ratio (OR), 8.16; P < 0.001; only WeChat use vs. control unadjusted OR, 2.91; P < 0.001]. Participants who did not use either WeChat or mobile payments had an elevated risk for cognitive impairment after adjusting for a number of covariates (neither WeChat nor mobile payments vs. control adjusted OR, 3.48; P < 0.001; only WeChat use vs. control adjusted OR, 1.86; P = 0.021). Conclusion Our study reveals a positive correlation between digital exclusion and cognitive impairment in Chinese adults, providing insights for promoting active digital integration among older adults. Further longitudinal research is needed to further validate this hypothesis.
Collapse
Affiliation(s)
- Xiaoli Liu
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaoxiao Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Minyue Pei
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Nan Li
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Misiura MB, Butts B, Hammerschlag B, Munkombwe C, Bird A, Fyffe M, Hemphill A, Dotson VM, Wharton W. Intersectionality in Alzheimer's Disease: The Role of Female Sex and Black American Race in the Development and Prevalence of Alzheimer's Disease. Neurotherapeutics 2023; 20:1019-1036. [PMID: 37490246 PMCID: PMC10457280 DOI: 10.1007/s13311-023-01408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
It is well known that vascular factors and specific social determinants of health contribute to dementia risk and that the prevalence of these risk factors differs according to race and sex. In this review, we discuss the intersection of sex and race, particularly female sex and Black American race. Women, particularly Black women, have been underrepresented in Alzheimer's disease clinical trials and research. However, in recent years, the number of women participating in clinical research has steadily increased. A greater prevalence of vascular risk factors such as hypertension and type 2 diabetes, coupled with unique social and environmental pressures, puts Black American women particularly at risk for the development of Alzheimer's disease and related dementias. Female sex hormones and the use of hormonal birth control may offer some protective benefits, but results are mixed, and studies do not consistently report the demographics of their samples. We argue that as a research community, greater efforts should be made to not only recruit this vulnerable population, but also report the demographic makeup of samples in research to better target those at greatest risk for the disease.
Collapse
Affiliation(s)
- Maria B Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA.
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Brittany Butts
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Bruno Hammerschlag
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Chinkuli Munkombwe
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Arianna Bird
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Mercedes Fyffe
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Asia Hemphill
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Whitney Wharton
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Schon gewusst …? JOURNAL FÜR GYNÄKOLOGISCHE ENDOKRINOLOGIE/SCHWEIZ 2023. [PMCID: PMC10009860 DOI: 10.1007/s41975-023-00288-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
13
|
Stefanowski B, Kucharski M, Szeliga A, Snopek M, Kostrzak A, Smolarczyk R, Maciejewska-Jeske M, Duszewska A, Niwczyk O, Drozd S, Englert-Golon M, Smolarczyk K, Meczekalski B. Cognitive decline and dementia in women after menopause: Prevention strategies. Maturitas 2023; 168:53-61. [PMID: 36493633 DOI: 10.1016/j.maturitas.2022.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Worldwide, cognitive decline and dementia are becoming one of the biggest challenges for public health. The decline in cognition and the development of dementia may be caused by predisposing or trigger factors. There is no consensus over whether the drop in estrogen levels after menopause is a risk factor for cognitive decline and dementia. This article discusses the prevention of cognitive decline and dementia in women after menopause, both primary prevention (essentially pharmacological intervention) and secondary prevention (chiefly diet and weight reduction). Further study is required to clarify whether menopausal hormone therapy (MHT) has a role in dementia.
Collapse
Affiliation(s)
- Bogdan Stefanowski
- First Department of Psychiatry, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Marek Kucharski
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| | - Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Milena Snopek
- First Department of Psychiatry, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| | - Marzena Maciejewska-Jeske
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Anna Duszewska
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences Warsaw, Poland
| | - Olga Niwczyk
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Slawomir Drozd
- College of Medical Sciences, Institute of Physical Culture Studies, University of Rzeszow, Poland
| | - Monika Englert-Golon
- Surgical Gynecology Clinic, Department of Gynaecology Obstetrics and Gynaecological Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Smolarczyk
- Department of Dermatology Immunodermatology and Venereology, Medical University of Warsaw, Warsaw, Poland.
| | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland.
| |
Collapse
|
14
|
[Brain fog during menopause]. GYNAKOLOGISCHE ENDOKRINOLOGIE 2023; 21:62-63. [PMID: 36619593 PMCID: PMC9807087 DOI: 10.1007/s10304-022-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/03/2023]
|
15
|
Burns S, Selman A, Sehar U, Rawat P, Reddy AP, Reddy PH. Therapeutics of Alzheimer's Disease: Recent Developments. Antioxidants (Basel) 2022; 11:2402. [PMID: 36552610 PMCID: PMC9774459 DOI: 10.3390/antiox11122402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
With increasing aging, dementia is a growing public health concern globally. Patients with dementia have multiple psychological and behavioral changes, including depression, anxiety, inappropriate behavior, paranoia, agitation, and hallucinations. The major types of dementia are Alzheimer's disease (AD), vascular dementia (VCID), Lewy body dementia (LBD), frontotemporal dementia (FTD), and mixed dementia (MiAD). Among these, AD is the most common form of dementia in the elderly population. In the last three decades, tremendous progress has been made in understanding AD's biology and disease progression, particularly its molecular basis, biomarker development, and drug discovery. Multiple cellular changes have been implicated in the progression of AD, including amyloid beta, phosphorylated tau, synaptic damage, mitochondrial dysfunction, deregulated microRNAs, inflammatory changes, hormonal deregulation, and others; based on these changes, therapeutic strategies have been developed, which are currently being tested in animal models and human clinical trials. The purpose of our article is to highlight recent therapeutic strategies' developments, critically discuss current strategies' failures, and propose new strategies to combat this devasting mental illness.
Collapse
Affiliation(s)
- Scott Burns
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P. Reddy
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
16
|
Stute P, Lozza-Fiacco S. Strategies to cope with stress and anxiety during the menopausal transition. Maturitas 2022; 166:1-13. [PMID: 35964446 DOI: 10.1016/j.maturitas.2022.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
Abstract
The menopausal transition is often accompanied by psycho-vegetative symptoms, including stress and anxiety symptoms. Identifying stress and anxiety and intervening early can have an enormous public health impact. Health care practitioners like obstetrician-gynecologists or family doctors play a critical role in the diagnosis, prevention and treatment of stress and anxiety symptoms or disorders, as they often represent women's primary medical contact during the menopausal transition. However, they frequently do not feel confident in identifying and treating mental health problems. The aim of this review was to summarize current (since 2010) knowledge from randomized controlled trials, systematic reviews, and meta-analyses on diagnostics and treatment options, and to provide clinical decision-making algorithms. The recent literature suggests pharmacological, (cognitive) behavioral, and complementary treatments. The choice about which one to use should be discussed with the patient.
Collapse
Affiliation(s)
- Petra Stute
- Department of Obstetrics and Gynecology, University of Bern, Switzerland.
| | - Serena Lozza-Fiacco
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| |
Collapse
|
17
|
Menopause, wellbeing and health: A care pathway from the European Menopause and Andropause Society. Maturitas 2022; 163:1-14. [DOI: 10.1016/j.maturitas.2022.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
19
|
Baumgartner S, Stute P. Menopausale Hormontherapie und Demenz. GYNAKOLOGISCHE ENDOKRINOLOGIE 2022. [DOI: 10.1007/s10304-022-00445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|