1
|
Carriço JN, Gonçalves CI, Aragüés JM, Lemos MC. Kallmann Syndrome: Functional Analysis of a CHD7 Missense Variant Shows Aberrant RNA Splicing. Int J Mol Sci 2024; 25:12061. [PMID: 39596130 PMCID: PMC11594180 DOI: 10.3390/ijms252212061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Kallmann syndrome is a rare disorder characterized by hypogonadotropic hypogonadism and an impaired sense of smell (anosmia or hyposmia) caused by congenital defects in the development of the gonadotropin-releasing hormone (GnRH) and olfactory neurons. Mutations in several genes have been associated with Kallmann syndrome. However, genetic testing of this disorder often reveals variants of uncertain significance (VUS) that remain uninterpreted without experimental validation. The aim of this study was to analyze the functional consequences of a heterozygous missense VUS in the CHD7 gene (c.4354G>T, p.Val1452Leu), in a patient with Kallmann syndrome with reversal of hypogonadism. The variant, located in the first nucleotide of exon 19, was analyzed using minigene assays to determine its effect on ribonucleic acid (RNA) splicing. These showed that the variant generates two different transcripts: a full-length transcript with the missense change (p.Val1452Leu), and an abnormally spliced transcript lacking exon 19. The latter results in an in-frame deletion (p.Val1452_Lys1511del) that disrupts the helicase C-terminal domain of the CHD7 protein. The variant was reclassified as likely pathogenic. These findings demonstrate that missense variants can exert more extensive effects beyond simple amino acid substitutions and underscore the critical role of functional analyses in VUS reclassification and genetic diagnosis.
Collapse
Affiliation(s)
- Josianne Nunes Carriço
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Catarina Inês Gonçalves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - José Maria Aragüés
- Serviço de Endocrinologia, Diabetes e Metabolismo, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
| | - Manuel Carlos Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
2
|
Lopez Dacal J, Castro S, Suco S, Correa Brito L, Grinspon RP, Rey RA. Assessment of testicular function in boys and adolescents. Clin Endocrinol (Oxf) 2024; 101:455-465. [PMID: 37814597 DOI: 10.1111/cen.14979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE The hypothalamic-pituitary-testicular axis is characterised by the existence of major functional changes from its establishment in fetal life until the end of puberty. The assessment of serum testosterone and gonadotrophins and semen analysis, typically used in the adult male, is not applicable during most of infancy and childhood. On the other hand, the disorders of gonadal axis have different clinical consequences depending on the developmental stage at which the dysfunction is established. This review addresses the approaches to evaluate the hypothalamic-pituitary-testicular axis in the newborn, during childhood and at pubertal age. DESIGN We focused on the hormonal laboratory and genetic studies as well as on the clinical signs and imaging studies that guide the aetiological diagnosis and the functional status of the gonads. RESULTS Serum gonadotrophin and testosterone determination is useful in the first 3-6 months after birth and at pubertal age, whereas AMH and inhibin B are useful biomarkers of testis function from birth until the end of puberty. Clinical and imaging signs are helpful to appraise testicular hormone actions during fetal and postnatal life. CONCLUSIONS The interpretation of results derived from the assessment of hypothalamic-pituitary-testicular in paediatric patients requires a comprehensive knowledge of the developmental physiology of the axis to understand its pathophysiology and reach an accurate diagnosis of its disorders.
Collapse
Affiliation(s)
- Jimena Lopez Dacal
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sebastián Castro
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sofía Suco
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Lourdes Correa Brito
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Suzuki E, Nakabayashi K, Aoto S, Ogata T, Kuroki Y, Miyado M, Fukami M, Matsubara K. DNA methylation changes in the genome of patients with hypogonadotropic hypogonadism. Heliyon 2024; 10:e37648. [PMID: 39309794 PMCID: PMC11416509 DOI: 10.1016/j.heliyon.2024.e37648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Although some Mendelian neurodevelopmental disorders have been shown to entail specific DNA methylation changes designated as epi-signatures, it remains unknown whether epi-signatures are consistent features of other genetic disorders. Here, we analyzed DNA methylation profiles of patients with hypogonadotropic hypogonadism (HH), a rare neuroendocrine disorder typically caused by monogenic or oligogenic mutations. First, we performed microarray-based genome-wide methylation analyses of nine patients with HH due to ANOS1, SOX2, or SOX10 variants and 12 control individuals. The results showed that 1118 probes were differentially methylated in one or more patients. The differentially methylated probes were highly variable among patients. No significant methylation changes were observed in genes functionally associated with ANOS1, SOX2, or SOX10. Then, we performed pyrosequencing of six selected CpG sites in the nine patients and 35 additional HH patients. The results of the patients were compared with those of 48 fertile men. There were no common methylation changes among these patients, with the exception of hypermethylation of two CpG sites in the ZNF245 promoter of three patients. Hypermethylation of the promoter has previously been reported as a very rare epigenetic polymorphism in the general population. These results indicate that genomes of HH patients have considerable DNA methylation changes; however, these changes are more likely to be physiological epigenetic variations than disease-specific epi-signatures. Our data suggest a possible association between hypermethylation of the ZNF254 promoter and HH, which needs to be examined in future studies.
Collapse
Affiliation(s)
- Erina Suzuki
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Saki Aoto
- Medical Genome Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoko Kuroki
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
4
|
Carriço JN, Gonçalves CI, Al-Naama A, Syed N, Aragüés JM, Bastos M, Fonseca F, Borges T, Pereira BD, Pignatelli D, Carvalho D, Cunha F, Saavedra A, Rodrigues E, Saraiva J, Ruas L, Vicente N, Martin Martins J, De Sousa Lages A, Oliveira MJ, Castro-Correia C, Melo M, Martins RG, Couto J, Moreno C, Martins D, Oliveira P, Martins T, Martins SA, Marques O, Meireles C, Garrão A, Nogueira C, Baptista C, Gama-de-Sousa S, Amaral C, Martinho M, Limbert C, Barros L, Vieira IH, Sabino T, Saraiva LR, Lemos MC. Genetic architecture of congenital hypogonadotropic hypogonadism: insights from analysis of a Portuguese cohort. Hum Reprod Open 2024; 2024:hoae053. [PMID: 39308770 PMCID: PMC11415827 DOI: 10.1093/hropen/hoae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
STUDY QUESTION What is the contribution of genetic defects in Portuguese patients with congenital hypogonadotropic hypogonadism (CHH)? SUMMARY ANSWER Approximately one-third of patients with CHH were found to have a genetic cause for their disorder, with causal pathogenic and likely pathogenic germline variants distributed among 10 different genes; cases of oligogenic inheritance were also included. WHAT IS KNOWN ALREADY CHH is a rare and genetically heterogeneous disorder characterized by deficient production, secretion, or action of GnRH, LH, and FSH, resulting in delayed or absent puberty, and infertility. STUDY DESIGN SIZE DURATION Genetic screening was performed on a cohort of 81 Portuguese patients with CHH (36 with Kallmann syndrome and 45 with normosmic hypogonadotropic hypogonadism) and 263 unaffected controls. PARTICIPANTS/MATERIALS SETTING METHODS The genetic analysis was performed by whole-exome sequencing followed by the analysis of a virtual panel of 169 CHH-associated genes. The main outcome measures were non-synonymous rare sequence variants (population allele frequency <0.01) classified as pathogenic, likely pathogenic, and variants of uncertain significance (VUS). MAIN RESULTS AND THE ROLE OF CHANCE A genetic cause was identified in 29.6% of patients. Causal pathogenic and likely pathogenic variants were distributed among 10 of the analysed genes. The most frequently implicated genes were GNRHR, FGFR1, ANOS1, and CHD7. Oligogenicity for pathogenic and likely pathogenic variants was observed in 6.2% of patients. VUS and oligogenicity for VUS variants were observed in 85.2% and 54.3% of patients, respectively, but were not significantly different from that observed in controls. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION The identification of a large number of VUS presents challenges in interpretation and these may require reclassification as more evidence becomes available. Non-coding and copy number variants were not studied. Functional studies of the variants were not undertaken. WIDER IMPLICATIONS OF THE FINDINGS This study highlights the genetic heterogeneity of CHH and identified several novel variants that expand the mutational spectrum of the disorder. A significant proportion of patients remained without a genetic diagnosis, suggesting the involvement of additional genetic, epigenetic, or environmental factors. The high frequency of VUS underscores the importance of cautious variant interpretation. These findings contribute to the understanding of the genetic architecture of CHH and emphasize the need for further studies to elucidate the underlying mechanisms and identify additional causes of CHH. STUDY FUNDING/COMPETING INTERESTS This research was funded by the Portuguese Foundation for Science and Technology (grant numbers PTDC/SAU-GMG/098419/2008, UIDB/00709/2020, CEECINST/00016/2021/CP2828/CT0002, and 2020.04924.BD) and by Sidra Medicine-a member of the Qatar Foundation (grant number SDR400038). The authors declare no competing interests.
Collapse
Affiliation(s)
- Josianne Nunes Carriço
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | | - José Maria Aragüés
- Serviço de Endocrinologia, Diabetes e Metabolismo, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Margarida Bastos
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Fernando Fonseca
- Serviço de Endocrinologia, Hospital de Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisboa, Portugal
| | - Teresa Borges
- Unidade de Endocrinologia Pediátrica, Serviço de Pediatria, Centro Materno Infantil do Norte, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | | | - Duarte Pignatelli
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Davide Carvalho
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Filipe Cunha
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Ana Saavedra
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Elisabete Rodrigues
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Joana Saraiva
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Luisa Ruas
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Nuno Vicente
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - João Martin Martins
- Serviço de Endocrinologia, Diabetes e Metabolismo, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Adriana De Sousa Lages
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Maria João Oliveira
- Unidade de Endocrinologia Pediátrica, Serviço de Pediatria, Centro Materno Infantil do Norte, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Cíntia Castro-Correia
- Unidade de Endocrinologia e Diabetologia Pediátrica, Departamento de Pediatria, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Miguel Melo
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Raquel Gomes Martins
- Serviço de Endocrinologia, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Joana Couto
- Serviço de Endocrinologia, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Carolina Moreno
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Diana Martins
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Patrícia Oliveira
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Teresa Martins
- Serviço de Endocrinologia, Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - Sofia Almeida Martins
- Unidade de Endocrinologia Pediátrica, Serviço de Pediatria, Hospital de Braga, Braga, Portugal
| | - Olinda Marques
- Serviço de Endocrinologia, Hospital de Braga, Braga, Portugal
| | - Carla Meireles
- Serviço de Pediatria, Hospital da Senhora da Oliveira Guimarães, Guimarães, Portugal
| | - António Garrão
- Departamento de Endocrinologia, Hospital da Luz Lisboa, Lisboa, Portugal
| | - Cláudia Nogueira
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Carla Baptista
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Susana Gama-de-Sousa
- Serviço de Pediatria, Centro Hospitalar do Médio Ave, Unidade de V. N. Famalicão, Vila Nova de Famalicão, Portugal
| | - Cláudia Amaral
- Serviço de Endocrinologia, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Mariana Martinho
- Serviço de Endocrinologia, Centro Hospitalar do Tâmega e Sousa, Guilhufe, Portugal
| | - Catarina Limbert
- Unidade de Endocrinologia Pediátrica, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - Luisa Barros
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Inês Henriques Vieira
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Teresa Sabino
- Serviço de Endocrinologia, Hospital de Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisboa, Portugal
| | - Luís R Saraiva
- Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Manuel Carlos Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
5
|
Rey RA, Bergadá I, Ballerini MG, Braslavsky D, Chiesa A, Freire A, Grinspon RP, Keselman A, Arcari A. Diagnosing and treating anterior pituitary hormone deficiency in pediatric patients. Rev Endocr Metab Disord 2024; 25:555-573. [PMID: 38112850 DOI: 10.1007/s11154-023-09868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Hypopituitarism, or the failure to secrete hormones produced by the anterior pituitary (adenohypophysis) and/or to release hormones from the posterior pituitary (neurohypophysis), can be congenital or acquired. When more than one pituitary hormone axis is impaired, the condition is known as combined pituitary hormone deficiency (CPHD). The deficiency may be primarily due to a hypothalamic or to a pituitary disorder, or concomitantly both, and has a negative impact on target organ function. This review focuses on the pathophysiology, diagnosis and management of anterior pituitary hormone deficiency in the pediatric age. Congenital hypopituitarism is generally due to genetic disorders and requires early medical attention. Exposure to toxicants or intrauterine infections should also be considered as potential etiologies. The molecular mechanisms underlying the fetal development of the hypothalamus and the pituitary are well characterized, and variants in the genes involved therein may explain the pathophysiology of congenital hypopituitarism: mutations in the genes expressed in the earliest stages are usually associated with syndromic forms whereas variants in genes involved in later stages of pituitary development result in non-syndromic forms with more specific hormone deficiencies. Tumors or lesions of the (peri)sellar region, cranial radiation therapy, traumatic brain injury and, more rarely, other inflammatory or infectious lesions represent the etiologies of acquired hypopituitarism. Hormone replacement is the general strategy, with critical periods of postnatal life requiring specific attention.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina.
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - María Gabriela Ballerini
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Débora Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Analía Freire
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Andrea Arcari
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| |
Collapse
|
6
|
Correa Brito L, Keselman A, Villegas F, Scaglia P, Esnaola Azcoiti M, Castro S, Sanguineti N, Izquierdo A, Maier M, Bergadá I, Arberas C, Rey RA, Ropelato MG. Case report: Novel SIN3A loss-of-function variant as causative for hypogonadotropic hypogonadism in Witteveen-Kolk syndrome. Front Genet 2024; 15:1354715. [PMID: 38528912 PMCID: PMC10961356 DOI: 10.3389/fgene.2024.1354715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Pubertal delay can be due to hypogonadotropic hypogonadism (HH), which may occur in association with anosmia or hyposmia and is known as Kallmann syndrome (OMIM #308700). Recently, hypogonadotropic hypogonadism has been suggested to overlap with Witteveen-Kolk syndrome (WITKOS, OMIM #613406) associated with 15q24 microdeletions encompassing SIN3A. Whether hypogonadotropic hypogonadism is due to haploinsufficiency of SIN3A or any of the other eight genes present in 15q24 is not known. We report the case of a female patient with delayed puberty associated with intellectual disability, behavior problems, dysmorphic facial features, and short stature, at the age of 14 years. Clinical, laboratory, and imaging assessments confirmed the diagnosis of Kallmann syndrome. Whole-exome sequencing identified a novel heterozygous frameshift variant, NM_001145358.2:c.3045_3046dup, NP_001138830.1:p.(Ile1016Argfs*6) in SIN3A, classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG/AMP) criteria. Reverse phenotyping led to the clinical diagnosis of WITKOS. No other variant was found in the 96 genes potentially related to hypogonadotropic hypogonadism. The analysis of the other contiguous seven genes to SIN3A in 15q24 did not reveal any clinically relevant variant. In conclusion, these findings point to SIN3A as the gene in 15q24 related to the reproductive phenotype in patients with overlapping WITKOS and Kallmann syndrome.
Collapse
Affiliation(s)
- Lourdes Correa Brito
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Florencia Villegas
- Sección Genética Médica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Esnaola Azcoiti
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sebastián Castro
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Nora Sanguineti
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Agustín Izquierdo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Marianela Maier
- Sección Genética Médica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Claudia Arberas
- Sección Genética Médica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Gabriela Ropelato
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
7
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Tsampoukas G, Pang KH, Papatsoris A, Moussa M, Miah S. Testosterone Replacement Therapy in the Aged Male: Monitoring Patients’ Quality of Life Utilizing Scoring Systems. Int J Gen Med 2022; 15:7123-7130. [PMID: 36105846 PMCID: PMC9464626 DOI: 10.2147/ijgm.s253183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Hypogonadism has been associated with significant deterioration of well-being. In the aging male, late-onset hypogonadism affects sexual life, mental health, levels of energy, lower urinary tract symptoms and, therefore, quality of life may be found significantly deteriorated. Testosterone replacement or supplementation therapy has been found efficient to reverse the adverse effects of hypogonadism and improve quality of life. Scales and questionnaires assessing the general health, urinary symptoms, sexual health, and cognition can provide a thorough assessment of the clinical syndrome, optimize treatment, assist the follow-up, and facilitate referrals to other specialties depending on the chief complaint. A systematic assessment might combine several tools, but the optimal ones and the exact usage is unknown. In this narrative review, we are flipping through the literature presenting the available tools per domain for the assessment of quality of life in men on testosterone replacement therapy and we discuss the optimal usage.
Collapse
Affiliation(s)
- Georgios Tsampoukas
- Department of Urology, The Great Western Hospital, Swindon, UK
- U-merge Scientific Office, Athens, Greece
- Correspondence: Georgios Tsampoukas, Department of Urology, The Great Western Hospital, Swindon, UK, Email
| | - Karl H Pang
- Institute of Andrology, University College London Hospital, London, UK
| | - Athanasios Papatsoris
- U-merge Scientific Office, Athens, Greece
- Department of Urology, Sismanoglio University Hospital of Athens, Athens, Greece
| | - Mohamad Moussa
- Al Zahraa Hospital, University Medical Center, Lebanese University, Beirut, Lebanon
| | - Saiful Miah
- Department of Urology, Wycombe Hospital, Buckinghamshire NHS Trust, High Wycombe, UK
| |
Collapse
|
9
|
A Novel FGFR1 Missense Mutation in a Portuguese Family with Congenital Hypogonadotropic Hypogonadism. Int J Mol Sci 2022; 23:ijms23084423. [PMID: 35457241 PMCID: PMC9026826 DOI: 10.3390/ijms23084423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare reproductive endocrine disorder characterized by complete or partial failure of pubertal development and infertility due to deficiency of the gonadotropin-releasing hormone (GnRH). CHH has a significant clinical heterogeneity and can be caused by mutations in over 30 genes. The aim of this study was to investigate the genetic defect in two siblings with CHH. A woman with CHH associated with anosmia and her brother with normosmic CHH were investigated by whole exome sequencing. The genetic studies revealed a novel heterozygous missense mutation in the Fibroblast Growth Factor Receptor 1 (FGFR1) gene (NM_023110.3: c.242T>C, p.Ile81Thr) in the affected siblings and in their unaffected father. The mutation affected a conserved amino acid within the first Ig-like domain (D1) of the protein, was predicted to be pathogenic by structure and sequence-based prediction methods, and was absent in ethnically matched controls. These were consistent with a critical role for the identified missense mutation in the activity of the FGFR1 protein. In conclusion, our identification of a novel missense mutation of the FGFR1 gene associated with a variable expression and incomplete penetrance of CHH extends the known mutational spectrum of this gene and may contribute to the understanding of the pathogenesis of CHH.
Collapse
|