1
|
Chen R, Tsai J, Thompson PA, Chen Y, Xiong P, Liu C, Burrows F, Sivina M, Burger JA, Keating MJ, Wierda WG, Plunkett W. The multi-kinase inhibitor TG02 induces apoptosis and blocks B-cell receptor signaling in chronic lymphocytic leukemia through dual mechanisms of action. Blood Cancer J 2021; 11:57. [PMID: 33714981 PMCID: PMC7956145 DOI: 10.1038/s41408-021-00436-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The constitutive activation of B-cell receptor (BCR) signaling, together with the overexpression of the Bcl-2 family anti-apoptotic proteins, represents two hallmarks of chronic lymphocytic leukemia (CLL) that drive leukemia cell proliferation and sustain their survival. TG02 is a small molecule multi-kinase inhibitor that simultaneously targets both of these facets of CLL pathogenesis. First, its inhibition of cyclin-dependent kinase 9 blocked the activation of RNA polymerase II and transcription. This led to the depletion of Mcl-1 and rapid induction of apoptosis in the primary CLL cells. This mechanism of apoptosis was independent of CLL prognostic factors or prior treatment history, but dependent on the expression of BAX and BAK. Second, TG02, which inhibits the members of the BCR signaling pathway such as Lck and Fyn, blocked BCR-crosslinking-induced activation of NF-κB and Akt, indicating abrogation of BCR signaling. Finally, the combination of TG02 and ibrutinib demonstrated moderate synergy, suggesting a future combination of TG02 with ibrutinib, or use in patients that are refractory to the BCR antagonists. Thus, the dual inhibitory activity on both the CLL survival pathway and BCR signaling identifies TG02 as a unique compound for clinical development in CLL and possibly other B cell malignancies.
Collapse
Affiliation(s)
- Rong Chen
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Jennifer Tsai
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Philip A Thompson
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yuling Chen
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ping Xiong
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Chaomei Liu
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Francis Burrows
- Tragara Pharmaceuticals, Carlsbad, CA, USA.,Kura Oncology, Inc., San Diego, CA, USA
| | - Mariela Sivina
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jan A Burger
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Chen R, Zhu M, Chaudhari RR, Robles O, Chen Y, Skillern W, Qin Q, Wierda WG, Zhang S, Hull KG, Romo D, Plunkett W. Creating novel translation inhibitors to target pro-survival proteins in chronic lymphocytic leukemia. Leukemia 2019; 33:1663-1674. [DOI: 10.1038/s41375-018-0364-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/30/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
|
3
|
Rogalińska M, Góralski P, Błoński JZ, Robak P, Barciszewski J, Koceva-Chyła A, Piekarski H, Robak T, Kilianska ZM. Personalized therapy tests for the monitoring of chronic lymphocytic leukemia development. Oncol Lett 2017; 13:2079-2084. [PMID: 28454364 PMCID: PMC5403444 DOI: 10.3892/ol.2017.5725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/17/2016] [Indexed: 11/05/2022] Open
Abstract
There is individual variation in the course of disease development and response to therapy of patients with chronic lymphocytic leukemia (CLL). Novel treatment options for CLL include a new generation of purine analogs, antibodies and inhibitors of specific cell signaling pathways, which typically induce apoptosis or necrosis. A prospective analysis of patient blood samples revealed that a combination of four tests allowed the most appropriate and effective type of treatment to be selected prior to drug administration, and for the analysis of leukemic cell sensitivity to anticancer drug(s) during disease development. The comparative analysis of blood from the stable and progressive form of CLL in an individual patient revealed diversity in the response to anticancer agents. CLL peripheral blood mononuclear cells were incubated with cladribine + mafosfamide (CM), fludarabine + mafosfamide, CM + rituximab, rituximab alone (Rit) or kinetin riboside (RK). A combination of cell viability, differential scanning calorimetry (DSC) profiles of nuclear preparations and poly(ADP-ribose) polymerase 1 (PARP-1) protein expression analysis of the leukemic cells was performed to evaluate the anticancer effects of the tested agents during CLL development. The results of the present study indicate that such studies are effective in determining the most appropriate anticancer drug and could monitor disease progression on an individual level. In addition, the results of the current study suggest that CLL progression leads to diversification of the cellular drug response. The most efficient apoptosis inducer for the patient was purine analog RK when the disease was stable, while the CM combination was the most effective agent for the progressive form of disease.
Collapse
Affiliation(s)
| | - Paweł Góralski
- Department of Physical Chemistry, University of Lodz, Lodz 90-236, Poland
| | - Jerzy Z. Błoński
- Department of Hematology, Medical University of Lodz, Lodz 90-419, Poland
| | - Paweł Robak
- Department of Experimental Hematology, Medical University of Lodz, Lodz 90-419, Poland
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Science, Poznan 61-704, Poland
| | - Aneta Koceva-Chyła
- Department of Medical Biophysics, University of Lodz, Lodz 90-236, Poland
| | - Henryk Piekarski
- Department of Physical Chemistry, University of Lodz, Lodz 90-236, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz 90-419, Poland
| | | |
Collapse
|
4
|
Opel D, Schnaiter A, Dodier D, Jovanovic M, Gerhardinger A, Idler I, Mertens D, Bullinger L, Stilgenbauer S, Fulda S. Targeting inhibitor of apoptosis proteins by Smac mimetic elicits cell death in poor prognostic subgroups of chronic lymphocytic leukemia. Int J Cancer 2015; 137:2959-70. [PMID: 26096065 DOI: 10.1002/ijc.29650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022]
Abstract
Inhibitor of apoptosis (IAP) proteins are highly expressed in chronic lymphocytic leukemia (CLL) cells and contribute to evasion of cell death and poor therapeutic response. Here, we report that Smac mimetic BV6 dose-dependently induces cell death in 28 of 51 (54%) investigated CLL samples, while B-cells from healthy donors are largely unaffected. Importantly, BV6 is significantly more effective in prognostic unfavorable cases with, e.g., non-mutated VH status and TP53 mutation than samples with unknown or favorable prognosis. The majority of cases with 17p deletion (10/12) and Fludarabine refractory cases respond to BV6, indicating that BV6 acts independently of p53. BV6 also triggers cell death under survival conditions mimicking the microenvironment, e.g., by adding CD40 ligand or conditioned medium. Gene expression profiling identifies cell death, NF-κB and redox signaling among the top pathways regulated by BV6 not only in CLL but also in core-binding factor (CBF) acute myeloid leukemia (AML). Consistently, BV6 stimulates production of reactive oxygen species (ROS), which are contributing to BV6-induced cell death, since antioxidants reduce cell death. While BV6 causes degradation of cellular inhibitor of apoptosis (cIAP)1 and cIAP2 and nuclear factor-kappaB (NF-κB) pathway activation in primary CLL samples, BV6 induces cell death independently of caspase activity, receptor-interacting protein (RIP)1 activity or tumor necrosis factor (TNF)α, as zVAD.fmk, necrostatin-1 or TNFα-blocking antibody Enbrel fail to inhibit cell death. Together, these novel insights into BV6-regulated cell death in CLL have important implications for developing new therapeutic strategies to overcome cell death resistance especially in poor prognostic CLL subgroups.
Collapse
Affiliation(s)
- Daniela Opel
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Andrea Schnaiter
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Dagmar Dodier
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Marjana Jovanovic
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | - Irina Idler
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Daniel Mertens
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, , Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Abstract
In this issue of Blood, Liu et al report on OSU-T315, a new agent that specifically disrupts the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway and shows high proapoptotic activity against chronic lymphocytic leukemia (CLL) cells, which may indicate a potential therapeutic application in this disease
Collapse
|
6
|
Rogalińska M, Błoński JZ, Góralski P, Wawrzyniak E, Hartman M, Rogalska A, Robak P, Koceva-Chyła A, Piekarski H, Robak T, Kiliańska ZM. Relationship between in vitro drug sensitivity and clinical response of patients to treatment in chronic lymphocytic leukemia. Int J Oncol 2015; 46:1259-67. [PMID: 25572009 DOI: 10.3892/ijo.2015.2823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/04/2014] [Indexed: 11/05/2022] Open
Abstract
To improve the efficacy of therapeutic options in chronic lymphocytic leukemia (CLL) an in vitro system to determine the response of mononuclear blood cells from blood of patients was elaborated. The study combines four approaches, i.e., cell viability, apoptosis rate, differential scanning calorimetry (DSC), and immunoblotting to develop personalized therapy protocols based on the cell sensitivity to drug exposure of individual CLL patients. The complementary analyses were performed on 28 peripheral blood samples from previously untreated CLL patients before therapy. The induction and progress of apoptosis in CLL cells exposed in vitro to purine analogs combined with mafosfamide, i.e., cladribine + mafosfamide (CM) and fludarabine + mafosfamide (FM) were assessed using the above approaches. The changes in thermal profiles (decrease/loss of transition at 95±5˚C) coincided with an accumulation of apoptotic cells, a decrease in the number of viable cells, and differences in the expression of the apoptosis‑related protein PARP‑1. No significant changes were observed in the thermal profiles of nuclei isolated from CLL cells resistant to the treatment. The complementary assays revealed a strong relationship between both the in vitro sensitivity of leukemia cells to drugs and the clinical response of the patients, determined usually after the sixth course of treatment (after ~6 months of therapy). As a summary of studies followed by complementary tests, our findings demonstrate the value of in vitro exposure of CLL cell samples to drugs intended to treat CLL patients, before their administration in order to recommend the most suitable and effective therapy for individual patients.
Collapse
Affiliation(s)
- Małgorzata Rogalińska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jerzy Z Błoński
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Paweł Góralski
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Ewa Wawrzyniak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Mariusz Hartman
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Aneta Rogalska
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paweł Robak
- Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
| | - Aneta Koceva-Chyła
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Henryk Piekarski
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Zofia M Kiliańska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Karlsson H, Karlsson SCH, Lindqvist AC, Fransson M, Paul-Wetterberg G, Nilsson B, Essand M, Nilsson K, Frisk P, Jernberg-Wiklund H, Loskog A, Loskog SIA. Combining CAR T cells and the Bcl-2 family apoptosis inhibitor ABT-737 for treating B-cell malignancy. Cancer Gene Ther 2013; 20:386-93. [PMID: 23788110 DOI: 10.1038/cgt.2013.35] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/18/2013] [Indexed: 01/04/2023]
Abstract
B-cell malignancies upregulate the B-cell lymphoma 2 (Bcl-2) family inhibitors of the intrinsic apoptosis pathway, making them therapy resistant. However, small-molecule inhibitors of Bcl-2 family members such as ABT-737 restore a functional apoptosis pathway in cancer cells, and its oral analog ABT-263 (Navitoclax) has entered clinical trials. Gene engineered chimeric antigen receptor (CAR) T cells also show promise in B-cell malignancy, and as they induce apoptosis via the extrinsic pathway, we hypothesized that small-molecule inhibitors of the Bcl-2 family may potentiate the efficacy of CAR T cells by engaging both apoptosis pathways. CAR T cells targeting CD19 were generated from healthy donors as well as from pre-B-ALL (precursor-B acute lymphoblastic leukemia) patients and tested together with ABT-737 to evaluate apoptosis induction in five B-cell tumor cell lines. The CAR T cells were effective even if the cell lines exhibited different apoptosis resistance profiles, as shown by analyzing the expression of apoptosis inhibitors by PCR and western blot. When combining T-cell and ABT-737 therapy simultaneously, or with ABT-737 as a presensitizer, tumor cell apoptosis was significantly increased. In conclusion, the apoptosis inducer ABT-737 enhanced the efficacy of CAR T cells and could be an interesting drug candidate to potentiate T-cell therapy.
Collapse
Affiliation(s)
| | - S C H Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Scavullo C, Servida F, Lecis D, Onida F, Drago C, Ferrante L, Seneci P, Barcellini W, Lionetti M, Todoerti K, Neri A, Delia D, Deliliers GL. Single-agent Smac-mimetic compounds induce apoptosis in B chronic lymphocytic leukaemia (B-CLL). Leuk Res 2013; 37:809-15. [PMID: 23618690 DOI: 10.1016/j.leukres.2013.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/11/2013] [Accepted: 03/24/2013] [Indexed: 11/16/2022]
Abstract
Defective apoptosis is a hallmark of the progression of B chronic lymphocytic leukaemia (B-CLL). Smac-mimetics have been shown to induce apoptosis in several tumours. We describe the in vitro pro-apoptotic activity and regulation of the molecular pathway induced by new Smac-mimetics in B-CLL. The cytotoxic effect was significantly higher in B-CLL samples than in healthy controls. No significant synergistic effect was observed in combined treatment. In conclusion one of our compounds (Smac66), used as monotherapy and not in combination, is highly active against B-CLL cells thus suggesting a promising therapeutic potential as a new class of antileukemic drugs in haematology.
Collapse
Affiliation(s)
- Cinzia Scavullo
- Fondazione Matarelli, Dipartimento di Farmacologia Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rogalińska M, Franiak-Pietryga I, Błoński JZ, Góralski P, Maciejewski H, Janus A, Robak P, Mirowski M, Piekarski H, Robak T, Kiliańska ZM. Toward personalized therapy for chronic lymphocytic leukemia: DSC and cDNA microarray assessment of two cases. Cancer Biol Ther 2012; 14:6-12. [PMID: 23114648 DOI: 10.4161/cbt.22623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The differences in clinical course of chronic lymphocytic leukemia could have an impact on variations in a patient's response to therapy. Our published results revealed that thermal transition (95 ± 5°C) in differential scanning calorimetry profiles appear to be characteristic for the advanced stage of CLL. Moreover, a decrease/loss of this transition in nuclei from leukemic cells exposed to drugs ex vivo could indicate their diverse efficacy. It seems that the lack of changes in thermal profile could predict patient's drug resistance. In this study, we demonstrate the results obtained after drug treatment of leukemic cells by calorimetry, apoptosis-related parameters involved in expression of genes using cDNA microarray and western blot. These data were compared with the patients' clinical parameters before and after RCC therapy (rituximab + cladribine + cyclophosphamide). The complementary analysis of studied cases with opposite clinical response (CR or NR) revealed a strong relationship between clinical data, differences in thermal scans and apoptosis-related gene expression. We quantified expression of eight of apoptosis-related 89 genes, i.e., NOXA, PUMA, APAF1, ESRRBL1, CASP3, BCL2, BCL2A1 and MCL1. Particular differences in NOXA and BCL2 expression were revealed. NOXA expression in cells of patients who achieved a complete response to RCC therapy was 0.44 times higher in comparison to control ones. Interestingly, in the case of patients who did not respond to immunotherapy, NOXA expression was highly downregulated (RQ = 4.39) as compared with untreated cells. These results were confirmed by distinct cell viability, protein expression as well as by differences in calorimetry profiles.
Collapse
|
10
|
Billard C. Development of Noxa-like BH3 mimetics for apoptosis-based therapeutic strategy in chronic lymphocytic leukemia. Mol Cancer Res 2012; 10:673-6. [PMID: 22466256 DOI: 10.1158/1541-7786.mcr-12-0015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite real advances made in chemoimmunotherapy, chronic lymphocytic leukemia (CLL) is still an incurable disease. New therapeutic strategies based on the restoration of the cell death program seemed relevant. Some members of the Bcl-2 family are critical players in the defective apoptotic program in CLL cells and/or targets of apoptosis inducers in vitro. The concept of BH3 mimetics has led to the characterization of small molecules mimicking proapoptotic BH3-only members of the Bcl-2 family by their ability to bind and antagonize the prosurvival members. Some putative or actual BH3 mimetics are already being tested in clinical trials with somewhat promising results. However, none of them has a high enough interaction affinity with Mcl-1, a crucial antiapoptotic factor in CLL. It has been suggested that resistance to BH3 mimetics can be overcome by using inhibitors of Mcl-1 expression. An alternative and more direct strategy is to design mimetics of the Noxa BH3 domain, which is a specific antagonistic Mcl-1 ligand. The development of such Noxa-like BH3 mimetics, capable of directly interacting with Mcl-1 and efficiently neutralizing its antiapoptotic activity, is extremely important to evaluate their impact on the clinical outcome of patients with CLL.
Collapse
Affiliation(s)
- Christian Billard
- Centre de Recherche des Cordeliers, Equipe 18, INSERM U 872; Université Pierre et Marie Curie, UMRS 872, Paris, France.
| |
Collapse
|
11
|
Billard C. Design of novel BH3 mimetics for the treatment of chronic lymphocytic leukemia. Leukemia 2012; 26:2032-8. [PMID: 22453662 DOI: 10.1038/leu.2012.88] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Impaired programmed cell death is an important factor in the pathogenesis of chronic lymphocytic leukemia (CLL) and in the development of resistance to chemoimmunotherapy. Hence, the reactivation of apoptotic processes is likely to be a pertinent strategy for circumventing this resistance. Proteins from the Bcl-2 family are critical elements in defective apoptosis. Some compounds induce the apoptosis of CLL cells ex vivo by downregulation of prosurvival members of this family (for example, Bcl-2 and Mcl-1), whereas others act by upregulation of proapoptotic Bcl-2 homology (BH) 3-only members (for example, Noxa and Bim). The concept of BH3 mimetics was prompted by the fact that BH3-only proteins are specific antagonistic ligands of prosurvival Bcl-2 family members. This led to the design of small molecules capable of inhibiting the activity of prosurvival Bcl-2 proteins and inducing apoptosis in leukemia cells in vitro and antileukemic effects in animal models. Several putative or actual BH3 mimetics are currently being trialed in the clinic. Two novel BH3 mimetics that can specifically bind to and antagonize Mcl-1 (a crucial antiapoptotic factor in CLL) have recently been discovered. The evaluation of this type of compound's clinical impact in CLL can now be considered.
Collapse
Affiliation(s)
- C Billard
- Centre de Recherche des Cordeliers, UMRS 872 (Equipe 18), Paris, France.
| |
Collapse
|
12
|
Żołnierczyk JD, Komina O, Błoński JZ, Borowiak A, Cebula-Obrzut B, Smolewski P, Robak P, Kiliańska ZM, Węsierska-Gądek J. Can ex vivo evaluation (testing) predict the sensitivity of CLL cells to therapy with purine analogs in conjunction with an alkylating agent? A comparison of in vivo and ex vivo responses to treatment. Med Oncol 2011; 29:2111-26. [PMID: 22086735 DOI: 10.1007/s12032-011-0105-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/28/2011] [Indexed: 12/15/2022]
Abstract
Malfunctions in the regulation of apoptosis cause the accumulation of malignant, long-lived B CD19+/CD5+ cells in chronic lymphocytic leukemia (CLL). The primary goal in CLL therapy is to overcome resistance to apoptosis and efficiently trigger programmed cell death in leukemic cells. This study demonstrated that the in vivo responses of malignant cells from CLL patients after administration of purine analogs (cladribine/fludarabine) with cyclophosphamide vary significantly. For comparative purposes, the sensitivity of leukemic cells obtained from the same CLL patients to conventional purine analogs and the selective CDK inhibitor R-roscovitine (ROSC) was determined, with and without the addition of an alkylating agent, prior to the onset of in vivo therapy. The kinetics and rate of spontaneous and drug-induced apoptosis of CLL cells under ex vivo conditions differed significantly between patients, mirroring the variability observed during in vivo treatment. Interestingly, individual patients' leukemic cells were comparably sensitive to the drugs under both conditions. Of the drugs examined, ROSC exerted the highest therapeutic efficacy under ex vivo conditions. Our results indicate that ex vivo testing might be useful for identifying the most potent first-line therapeutic regimen for specific CLL patients and possibly for the design of therapies tailored for individual CLL patients.
Collapse
Affiliation(s)
- Jolanta D Żołnierczyk
- Department of Cytobiochemistry, University of Łódz, Pomorska 141/143, 90-236 Łódz, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Spagnuolo C, Cerella C, Russo M, Chateauvieux S, Diederich M, Russo GL. Quercetin downregulates Mcl-1 by acting on mRNA stability and protein degradation. Br J Cancer 2011; 105:221-30. [PMID: 21750559 PMCID: PMC3142809 DOI: 10.1038/bjc.2011.229] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: We recently demonstrated that quercetin, a flavonoid naturally present in food and beverages belonging to the large class of phytochemicals, was able to sensitise leukaemic cells isolated from patients with chronic lymphocytic leukaemia (CLL) when associated with recombinant tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) or anti-CD95. We also showed that quercetin potentiated the effect of fludarabine on resistant B cells from CLL patients. Resistance to therapy in CLL depends on the expression and activity of anti-apoptotic proteins of the Bcl-2 family. Among these, myeloid cell leukaemia-1 (Mcl-1) has been associated with apoptotic resistance in CLL. Therefore, we investigate here whether the sensitising activity of this flavonoid, which leads to increased apoptosis in both cell lines and CLL, could be related to Mcl-1 expression and stability. Results: B cells isolated from CLL patients showed different levels of Mcl-1 protein expression, resulting, in several cases, in increased sensitivity to fludarabine. Quercetin significantly enhanced the downregulation of Mcl-1 in B cells isolated from selected patients expressing detectable levels of Mcl-1. In U-937 cells, quercetin increased Mcl-1 mRNA instability in the presence of actinomycin D. When cells were treated with MG-132, a proteasome inhibitor, Mcl-1 protein level increased. However, quercetin, in the presence of Z-Vad-FMK, continued to lower Mcl-1 protein expression, indicating its independence from caspase-mediated degradation. In contrast, co-treatment of quercetin and MG-132 did not revert the effect of MG-132 mono-treatment, thus suggesting a possible interference of quercetin in regulating the proteasome-dependent degradation of Mcl-1. Gossypol, a small-molecule inhibitor of Bcl-2 family members, mimics the activity of quercetin by lowering Mcl-1 expression and sensitising U-937 cells to apoptosis induced by recombinant TRAIL and the Fas-ligand. Conclusion: This study demonstrates that in U-937 cells, quercetin downregulates Mcl-1 acting directly or indirectly on its mRNA stability and protein degradation, suggesting that the same mechanism may bypass resistance to apoptosis in leukaemic cells isolated from CLL patients and sensitise B cells to apoptosis induced by drugs and death receptor inducers.
Collapse
Affiliation(s)
- C Spagnuolo
- Institute of Food Sciences, National Research Council, 83100 Avellino 83100 Avellino, Italy
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Chen R, Chubb S, Cheng T, Hawtin RE, Gandhi V, Plunkett W. Responses in mantle cell lymphoma cells to SNS-032 depend on the biological context of each cell line. Cancer Res 2010; 70:6587-97. [PMID: 20663900 DOI: 10.1158/0008-5472.can-09-3578] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SNS-032 is a potent inhibitor of cyclin-dependent kinases (Cdk) 2, 7, and 9 that regulate the cell cycle and transcription. Our studies in indolent primary chronic lymphocytic leukemia cells showed that SNS-032 inhibited transcription, diminished the antiapoptotic protein Mcl-1, and induced apoptosis. The present study focuses on evaluating this compound in four proliferating mantle cell lymphoma lines (Jeko-1, Granta 519, Mino, and SP-53). Consistent with its action against Cdk9 and Cdk7, SNS-032 inhibited the phosphorylation of RNA pol II in all four lines and blocked RNA synthesis. The transcripts and protein levels of short-lived proteins decreased, including cyclin D1 and Mcl-1. Cell growth was inhibited in a concentration-dependent manner in all lines. Apoptosis was induced in JeKo-1, Mino, and SP-53 cells without disrupting cell cycle distribution. However, apoptosis was limited in Granta cells; rather, there was a significant reduction of clonogenic survival. Small interfering RNA was used to specifically knock down Mcl-1 and cyclin D1 in JeKo-1 and Granta cells. Knocking down Mcl-1 induced significant apoptosis in Jeko-1 cells but not Granta cells. Reducing cyclin D1, rather than Mcl-1, was associated with loss of clonogenic survival in Granta cells. Thus, these results indicated that mantle cell lymphoma cell lines have distinct mechanisms sustaining their survival, and the mechanism of action of SNS-032 is dependent on the biological context of an individual line.
Collapse
Affiliation(s)
- Rong Chen
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center and Graduate School of Biomedical Sciences, University of Texas Houston Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|