1
|
Wang H, Wang Y, Hao L, Liu X, Zhang J, Yao P, Liu D, Wang R. Treatment for a primary multidrug-resistant B-cell acute lymphoblastic leukemia patient carrying a SSBP2-CSF1R fusion gene: a case report. Front Oncol 2023; 13:1291570. [PMID: 38107066 PMCID: PMC10723836 DOI: 10.3389/fonc.2023.1291570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
SSBP2-CSF1R is an important biomarker for clinical diagnosis and prognosis of Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL). This case report presents a pediatric Ph-like ALL patient carrying the SSBP2-CSF1R fusion gene. The patient was resistant to most conventional chemotherapy regimens and to dasatinib, an inhibitor that has been reported to have a therapeutic effect on SSBP2-CSF1R fusion Ph-like ALL, as she remained minimal residual disease (MRD) positive (detection by flow cytometry) and SSBP2-CSF1R fusion gene (detection by RT-PCR) positive after five rounds of such regimens. We thus conducted a large-scale in vitro screening to assess the sensitivity of the patient's leukemic cells to anti-cancer drugs. Based on the susceptibility results, we chose to combine cytarabine, homoharringtonine, dexamethasone, fludarabine, vindesine, and epirubicin for treatment. Clinical results showed that after a course of treatment, both MRD and SSBP2-CSF1R fusion gene turned negative, and there was no recurrence during an 18-month follow-up. In conclusion, our study suggests that the SSBP2-CSF1R fusion gene may be an important biomarker of primary drug resistance in Ph-like ALL, and indicate that the combination of cytarabine, homoharringtonine, dexamethasone, fludarabine, vindesine, and epirubicin can achieve optimal therapeutic results in this category of patients.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yujiao Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jihong Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pin Yao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danping Liu
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Brady SW, Roberts KG, Gu Z, Shi L, Pounds S, Pei D, Cheng C, Dai Y, Devidas M, Qu C, Hill AN, Payne-Turner D, Ma X, Iacobucci I, Baviskar P, Wei L, Arunachalam S, Hagiwara K, Liu Y, Flasch DA, Liu Y, Parker M, Chen X, Elsayed AH, Pathak O, Li Y, Fan Y, Michael JR, Rusch M, Wilkinson MR, Foy S, Hedges DJ, Newman S, Zhou X, Wang J, Reilly C, Sioson E, Rice SV, Pastor Loyola V, Wu G, Rampersaud E, Reshmi SC, Gastier-Foster J, Guidry Auvil JM, Gesuwan P, Smith MA, Winick N, Carroll AJ, Heerema NA, Harvey RC, Willman CL, Larsen E, Raetz EA, Borowitz MJ, Wood BL, Carroll WL, Zweidler-McKay PA, Rabin KR, Mattano LA, Maloney KW, Winter SS, Burke MJ, Salzer W, Dunsmore KP, Angiolillo AL, Crews KR, Downing JR, Jeha S, Pui CH, Evans WE, Yang JJ, Relling MV, Gerhard DS, Loh ML, Hunger SP, Zhang J, Mullighan CG. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat Genet 2022; 54:1376-1389. [PMID: 36050548 PMCID: PMC9700506 DOI: 10.1038/s41588-022-01159-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Here, using whole-genome, exome and transcriptome sequencing of 2,754 childhood patients with ALL, we find that, despite a generally low mutation burden, ALL cases harbor a median of four putative somatic driver alterations per sample, with 376 putative driver genes identified varying in prevalence across ALL subtypes. Most samples harbor at least one rare gene alteration, including 70 putative cancer driver genes associated with ubiquitination, SUMOylation, noncoding transcripts and other functions. In hyperdiploid B-ALL, chromosomal gains are acquired early and synchronously before ultraviolet-induced mutation. By contrast, ultraviolet-induced mutations precede chromosomal gains in B-ALL cases with intrachromosomal amplification of chromosome 21. We also demonstrate the prognostic significance of genetic alterations within subtypes. Intriguingly, DUX4- and KMT2A-rearranged subtypes separate into CEBPA/FLT3- or NFATC4-expressing subgroups with potential clinical implications. Together, these results deepen understanding of the ALL genomic landscape and associated outcomes.
Collapse
Affiliation(s)
- Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine & Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yunfeng Dai
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashley N Hill
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pradyuamna Baviskar
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Wei
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sasi Arunachalam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Diane A Flasch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew Parker
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Abdelrahman H Elsayed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Omkar Pathak
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Robert Michael
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark R Wilkinson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dale J Hedges
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colleen Reilly
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen V Rice
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Victor Pastor Loyola
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Evadnie Rampersaud
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shalini C Reshmi
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Jaime M Guidry Auvil
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Office of Data Sharing, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patee Gesuwan
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malcolm A Smith
- Cancer Therapeutics Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Naomi Winick
- Department of Pediatric Hematology Oncology and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Richard C Harvey
- Department of Pathology, University of New Mexico Cancer Center, Albuquerque, NM, USA
| | | | - Eric Larsen
- Department of Pediatrics, Maine Children's Cancer Program, Scarborough, ME, USA
| | - Elizabeth A Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Michael J Borowitz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - William L Carroll
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | | | - Karen R Rabin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Kelly W Maloney
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| | - Stuart S Winter
- Children's Minnesota Research Institute and Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Michael J Burke
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wanda Salzer
- Uniformed Services University, School of Medicine, Bethesda, MD, USA
| | | | | | - Kristine R Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Resistance Mechanisms in Pediatric B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:ijms23063067. [PMID: 35328487 PMCID: PMC8950780 DOI: 10.3390/ijms23063067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the rapid development of medicine, even nowadays, acute lymphoblastic leukemia (ALL) is still a problem for pediatric clinicians. Modern medicine has reached a limit of curability even though the recovery rate exceeds 90%. Relapse occurs in around 20% of treated patients and, regrettably, 10% of diagnosed ALL patients are still incurable. In this article, we would like to focus on the treatment resistance and disease relapse of patients with B-cell leukemia in the context of prognostic factors of ALL. We demonstrate the mechanisms of the resistance to steroid therapy and Tyrosine Kinase Inhibitors and assess the impact of genetic factors on the treatment resistance, especially TCF3::HLF translocation. We compare therapeutic protocols and decipher how cancer cells become resistant to innovative treatments—including CAR-T-cell therapies and monoclonal antibodies. The comparisons made in our article help to bring closer the main factors of resistance in hematologic malignancies in the context of ALL.
Collapse
|
4
|
Sterrenberg JN, Folkerts ML, Rangel V, Lee SE, Pannunzio NR. Diversity upon diversity: linking DNA double-strand break repair to blood cancer health disparities. Trends Cancer 2022; 8:328-343. [PMID: 35094960 PMCID: PMC9248772 DOI: 10.1016/j.trecan.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Chromosomal translocations arising from aberrant repair of multiple DNA double-strand breaks (DSBs) are a defining characteristic of many cancers. DSBs are an essential part of physiological processes in antibody-producing B cells. The B cell environment is poised to generate genome instability leading to translocations relevant to the pathology of blood cancers. These are a diverse set of cancers, but limited data from under-represented groups have pointed to health disparities associated with each. We focus on the DSBs that occur in developing B cells and propose the most likely mechanism behind the formation of translocations. We also highlight specific cancers in which these rearrangements occur and address the growing concern of health disparities associated with them.
Collapse
|
5
|
Chang Y, Min J, Jarusiewicz JA, Actis M, Yu-Chen Bradford S, Mayasundari A, Yang L, Chepyala D, Alcock LJ, Roberts KG, Nithianantham S, Maxwell D, Rowland L, Larsen R, Seth A, Goto H, Imamura T, Akahane K, Hansen BS, Pruett-Miller SM, Paietta EM, Litzow MR, Qu C, Yang JJ, Fischer M, Rankovic Z, Mullighan CG. Degradation of Janus kinases in CRLF2-rearranged acute lymphoblastic leukemia. Blood 2021; 138:2313-2326. [PMID: 34110416 PMCID: PMC8662068 DOI: 10.1182/blood.2020006846] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 04/02/2021] [Indexed: 11/20/2022] Open
Abstract
CRLF2-rearranged (CRLF2r) acute lymphoblastic leukemia (ALL) accounts for more than half of Philadelphia chromosome-like (Ph-like) ALL and is associated with a poor outcome in children and adults. Overexpression of CRLF2 results in activation of Janus kinase (JAK)-STAT and parallel signaling pathways in experimental models, but existing small molecule inhibitors of JAKs show variable and limited efficacy. Here, we evaluated the efficacy of proteolysis-targeting chimeras (PROTACs) directed against JAKs. Solving the structure of type I JAK inhibitors ruxolitinib and baricitinib bound to the JAK2 tyrosine kinase domain enabled the rational design and optimization of a series of cereblon (CRBN)-directed JAK PROTACs utilizing derivatives of JAK inhibitors, linkers, and CRBN-specific molecular glues. The resulting JAK PROTACs were evaluated for target degradation, and activity was tested in a panel of leukemia/lymphoma cell lines and xenograft models of kinase-driven ALL. Multiple PROTACs were developed that degraded JAKs and potently killed CRLF2r cell lines, the most active of which also degraded the known CRBN neosubstrate GSPT1 and suppressed proliferation of CRLF2r ALL in vivo, e.g. compound 7 (SJ988497). Although dual JAK/GSPT1-degrading PROTACs were the most potent, the development and evaluation of multiple PROTACs in an extended panel of xenografts identified a potent JAK2-degrading, GSPT1-sparing PROTAC that demonstrated efficacy in the majority of kinase-driven xenografts that were otherwise unresponsive to type I JAK inhibitors, e.g. compound 8 (SJ1008030). Together, these data show the potential of JAK-directed protein degradation as a therapeutic approach in JAK-STAT-driven ALL and highlight the interplay of JAK and GSPT1 degradation activity in this context.
Collapse
Affiliation(s)
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics
| | | | | | | | | | - Lei Yang
- Department of Chemical Biology and Therapeutics
| | | | | | | | | | | | | | - Randolph Larsen
- Department of Pharmaceutical Sciences, and
- Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | | | - Hiroaki Goto
- Division of Hemato-Oncology/Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St Jude Children's Research Hospital, Memphis, TN
| | | | - Elisabeth M Paietta
- Cancer Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Mark R Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN; and
| | | | - Jun J Yang
- Department of Pharmaceutical Sciences, and
- Hematological Malignancies Program, St Jude Children's Research Hospital, Memphis, TN
| | - Marcus Fischer
- Department of Chemical Biology and Therapeutics
- Department of Structural Biology
- Cancer Biology Program, and
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics
- Cancer Biology Program, and
| | - Charles G Mullighan
- Department of Pathology
- Hematological Malignancies Program, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
6
|
Therapeutic delivery of siRNA with polymeric carriers to down-regulate STAT5A expression in high-risk B-cell acute lymphoblastic leukemia (B-ALL). PLoS One 2021; 16:e0251719. [PMID: 34157051 PMCID: PMC8219370 DOI: 10.1371/journal.pone.0251719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/02/2021] [Indexed: 11/19/2022] Open
Abstract
Overexpression and persistent activation of STAT5 play an important role in the development and progression of acute lymphoblastic leukemia (ALL), the most common pediatric cancer. Small interfering RNA (siRNA)-mediated downregulation of STAT5 represents a promising therapeutic approach for ALL to overcome the limitations of current treatment modalities such as high relapse rates and poor prognosis. However, to effectively transport siRNA molecules to target cells, development of potent carriers is of utmost importance to surpass hurdles of delivery. In this study, we investigated the use of lipopolymers as non-viral delivery systems derived from low molecular weight polyethylenimines (PEI) substituted with lauric acid (Lau), linoleic acid (LA) and stearic acid (StA) to deliver siRNA molecules to ALL cell lines and primary samples. Among the lipid-substituted polymers explored, Lau- and LA-substituted PEI displayed excellent siRNA delivery to SUP-B15 and RS4;11 cells. STAT5A gene expression was downregulated (36-92%) in SUP-B15 and (32%) in RS4;11 cells using the polymeric delivery systems, which consequently reduced cell growth and inhibited the formation of colonies in ALL cells. With regard to ALL primary cells, siRNA-mediated STAT5A gene silencing was observed in four of eight patient cells using our leading polymeric delivery system, 1.2PEI-Lau8, accompanied by the significant reduction in colony formation in three of eight patients. In both BCR-ABL positive and negative groups, three of five patients demonstrated marked cell growth inhibition in both MTT and trypan blue exclusion assays using 1.2PEI-Lau8/siRNA complexes in comparison with their control siRNA groups. Three patient samples did not show any positive results with our delivery systems. Differential therapeutic responses to siRNA therapy observed in different patients could result from variable genetic profiles and patient-to-patient variability in delivery. This study supports the potential of siRNA therapy and the designed lipopolymers as a delivery system in ALL therapy.
Collapse
|
7
|
Genomic Analyses of Pediatric Acute Lymphoblastic Leukemia Ph+ and Ph-Like-Recent Progress in Treatment. Int J Mol Sci 2021; 22:ijms22126411. [PMID: 34203891 PMCID: PMC8232636 DOI: 10.3390/ijms22126411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Pediatric acute lymphoblastic leukemia (ALL) with t(9;22)(q34;q11.2) is a very rare malignancy in children. Approximately 3-5% of pediatric ALL patients present with the Philadelphia chromosome. Previously, children with Ph+ had a poor prognosis, and were considered for allogeneic stem cell transplantation (allo-HSCT) in their first remission (CR1). Over the last few years, the treatment of childhood ALL has significantly improved due to standardized research protocols. Hematopoietic stem cell transplantation (HSCT) has been the gold standard therapy in ALL Ph+ patients, but recently first-generation tyrosine kinase inhibitor (TKI)-imatinib became a major milestone in increasing overall survival. Genomic analyses give the opportunity for the investigation of new fusions or mutations, which can be used to establish effective targeted therapies. Alterations of the IKZF1 gene are present in a large proportion of pediatric and adult ALL Ph+ cases. IKZF1 deletions are present in ~15% of patients without BCR-ABL1 rearrangements. In BCR-ABL1-negative cases, IKZF1 deletions have been shown to have an independent prognostic impact, carrying a three-fold increased risk of treatment failure. The prognostic significance of IKZF1 gene aberrations in pediatric ALL Ph+ is still under investigation. More research should focus on targeted therapies and immunotherapy, which is not associated with serious toxicity in the same way as classic chemotherapy, and on the improvement of patient outcomes. In this review, we provide a molecular analysis of childhood ALL with t(9;22)(q34;q11.2), including the Ph-like subtype, and of treatment strategies.
Collapse
|
8
|
Thakral B, Jain N, Tang G, Konoplev S, Vega F, Medeiros LJ, Wang SA. From the archives of MD Anderson Cancer Center: Concurrent BCR-ABL1 and CRLF2 rearrangements in B-lymphoblast phase of chronic myeloid leukemia. Ann Diagn Pathol 2021; 53:151767. [PMID: 34118580 DOI: 10.1016/j.anndiagpath.2021.151767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/26/2022]
Abstract
The t(9;22)(q34;q11.2), also known as the Philadelphia (Ph) chromosome, results in BCR-ABL1 fusion residing on the derivative chromosome 22. This translocation is characteristic of chronic myeloid leukemia, but also can occur in a substantial subset of B acute lymphoblastic leukemia (B-ALL) cases. Ph-like B-ALL has a gene expression profile similar to that of BCR-ABL1 positive/Ph-positive B-ALL, but by definition Ph-like B-ALL does not have the sentinel BCR-ABL1 or the Ph chromosome. About half of Ph-like B-ALL cases carry CRLF2 rearrangements. Rare cases of de novo B-ALL with co-occurrence of BCR-ABL1 and CRLF2 rearrangements have been described. To our knowledge, this is the first report of concurrent BCR-ABL1 and CRLF2 rearrangements in blast phase of chronic myeloid leukemia. In this patient, CRLF2 rearrangement was acquired at the time of disease progression to B-lymphoblast phase of chronic myeloid leukemia. We also review the literature and discuss the distinct clinicopathologic, and genomic characteristics of CRLF2 rearranged B-ALL.
Collapse
Affiliation(s)
- Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Sergej Konoplev
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
9
|
Hrabovsky S, Vrzalova Z, Stika J, Jelinkova H, Jarosova M, Navrkalova V, Martenek J, Folber F, Salek C, Horacek JM, Pospisilova S, Mayer J, Doubek M. Genomic landscape of B-other acute lymphoblastic leukemia in an adult retrospective cohort with a focus on BCR-ABL1-like subtype. Acta Oncol 2021; 60:760-770. [PMID: 33750258 DOI: 10.1080/0284186x.2021.1900908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION BCR-ABL1-like acute lymphoblastic leukemia (ALL) is a high-risk disease with a complex genomic background. Though extensively studied, data on the frequency and mutual associations of present mutations are still incomplete in adult patients. This retrospective study aims to map the genomic landscape of B-other ALL in a cohort of adult patients with a focus on the BCR-ABL1-like ALL subtype. METHODS We analyzed bone marrow and peripheral blood samples of adult B-other ALL patients treated consecutively at three major Czech teaching hospitals. Samples were analyzed by cytogenetic methods, gene expression profiling, multiplex ligation-dependent probe amplification (MLPA), and next-generation sequencing (NGS). RESULTS Fifty-eight B-other ALL patients (not BCR-ABL1, KMT2A-rearranged, ETV6-RUNX1, TCF3-PBX1, or iAMP21) were included in the study. Median follow-up was 23.8 months. Samples from 33 patients were available for a gene expression analysis, 48.9% identified as BCR-ABL1-like ALL. Of the BCR-ABL1-like ALL cases, 18.8% harbored IGH-CRLF2 and 12.5% P2RY8-CRLF2 fusion gene. We observed a higher MRD failure rate in BCR-ABL1-like than in non-BCR-ABL1-like ALL patients after the induction treatment (50.0 vs. 13.3%, p=.05). There was a trend to worse progression-free and overall survival in the BCR-ABL1-like group, though not statistically significant. Deletions in IKZF1 gene were found in 31.3% of BCR-ABL1-like cases. Patients with concurrent IKZF1 and CDKN2A/B, PAX5 or PAR1 region deletions (IKZF1plus profile) had significantly worse progression-free survival than those with sole IKZF1 deletion or IKZF1 wild-type (p=.02). NGS analysis was performed in 54 patients and identified 99 short variants in TP53, JAK2, NRAS, PAX5, CREBBP, NF1, FLT3, ATM, KRAS, RUNX1, and other genes. Seventy-five of these gene variants have not yet been described in B-cell precursor ALL to date. CONCLUSION This study widens existing knowledge of the BCR-ABL1-like and B-other ALL genomic landscape in the adult population, supports previous findings, and identifies a number of novel gene variants.
Collapse
Affiliation(s)
- Stepan Hrabovsky
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
| | - Zuzana Vrzalova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Stika
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Hana Jelinkova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
| | - Marie Jarosova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Veronika Navrkalova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Martenek
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Frantisek Folber
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
| | - Cyril Salek
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan M. Horacek
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Fourth Department of Internal Medicine – Hematology, University Hospital Hradec Kralove, Hradec Kralove, Czechia
- Department of Military Internal Medicine and Hygiene, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| |
Collapse
|
10
|
Clinical response to larotrectinib in adult Philadelphia chromosome-like ALL with cryptic ETV6-NTRK3 rearrangement. Blood Adv 2021; 4:106-111. [PMID: 31905241 DOI: 10.1182/bloodadvances.2019000769] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL) is a subtype of Ph-negative ALL that molecularly resembles Ph-positive ALL. It shares the adverse prognosis of Ph-positive ALL, but lacks the BCR-ABL1 fusion oncogene. Instead, Ph-like ALL is associated with alternative mutations in signaling pathways. We describe a case of Ph-like ALL that harbored 2 genomic alterations, which activated signaling, an NRASGly12Asp mutation, and an ETV6-NTRK3 rearrangement. Initially, the NRAS mutation was detected at high frequency, whereas the gene fusion was only detectable with a targeted next-generation sequencing-based fusion assay, but not by fluorescence in situ hybridization analysis. The disease failed to respond to multiagent chemotherapy but investigational CD19-directed chimeric antigen receptor T-cell therapy resulted in a complete remission. However, the leukemia relapsed after 6 weeks. Intriguingly, the NRAS mutation was extinguished during the chimeric antigen receptor T-cell therapy and did not contribute to the relapse, which was instead associated with a rise in ETV6-NTRK3. The relapsed leukemia progressed with further chemo- and immunotherapy but was controlled for 6 weeks with substantial leukemic cytoreduction using the TRK inhibitor larotrectinib. Unfortunately, recovery of normal hematopoiesis was only marginal and the patient eventually succumbed to infections. These results demonstrate that larotrectinib has clinical activity in ETV6-NTRK3-associated Ph-like ALL.
Collapse
|
11
|
Yadav V, Ganesan P, Veeramani R, Kumar V D. Philadelphia-Like Acute Lymphoblastic Leukemia: A Systematic Review. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e57-e65. [PMID: 33485429 DOI: 10.1016/j.clml.2020.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023]
Abstract
Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a subgroup of B-cell precursor ALL (BCP-ALL) with a gene expression profile analogous to Philadelphia-positive ALL and recurrent IKAROS Family Zinc Finger 1 (IKZF1) gene deletion despite lacking BCR-ABL1 (Breakpoint cluster region-ABL protooncogene) translocation. Although recognized to occur at all ages, the proportion of cases among BCP-ALL varies (< 10% in children and up to 30% in adolescents). In all age groups, males are more commonly affected. Generally, Ph-like ALL is associated with adverse clinical features and an increased risk of treatment failure with conventional approaches. Genetic alterations such as aberrant expression, point mutations, or fusion translocations lead to activation of cytokine receptors and signaling kinases, which affect the ABL1 (ABL class fusion) or Janus Kinase (JAK) signaling pathways. Several clinical trials are being conducted to understand whether specific tyrosine kinase inhibitor therapy can improve cure rates. This review summarizes the current literature available about this entity.
Collapse
Affiliation(s)
- Vineeta Yadav
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Prasanth Ganesan
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Raveendranath Veeramani
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India.
| | - Dinesh Kumar V
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
12
|
Smith KH, Budhraja A, Lynch J, Roberts K, Panetta JC, Connelly JP, Turnis ME, Pruett-Miller SM, Schuetz JD, Mullighan CG, Opferman JT. The Heme-Regulated Inhibitor Pathway Modulates Susceptibility of Poor Prognosis B-Lineage Acute Leukemia to BH3-Mimetics. Mol Cancer Res 2020; 19:636-650. [PMID: 33288732 DOI: 10.1158/1541-7786.mcr-20-0586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/28/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
Antiapoptotic MCL1 is one of the most frequently amplified genes in human cancers and elevated expression confers resistance to many therapeutics including the BH3-mimetic agents ABT-199 and ABT-263. The antimalarial, dihydroartemisinin (DHA) translationally represses MCL-1 and synergizes with BH3-mimetics. To explore how DHA represses MCL-1, a genome-wide CRISPR screen identified that loss of genes in the heme synthesis pathway renders mouse BCR-ABL+ B-ALL cells resistant to DHA-induced death. Mechanistically, DHA disrupts the interaction between heme and the eIF2α kinase heme-regulated inhibitor (HRI) triggering the integrated stress response. Genetic ablation of Eif2ak1, which encodes HRI, blocks MCL-1 repression in response to DHA treatment and represses the synergistic killing of DHA and BH3-mimetics compared with wild-type leukemia. Furthermore, BTdCPU, a small-molecule activator of HRI, similarly triggers MCL-1 repression and synergizes with BH3-mimetics in mouse and human leukemia including both Ph+ and Ph-like B-ALL. Finally, combinatorial treatment of leukemia bearing mice with both BTdCPU and a BH3-mimetic extended survival and repressed MCL-1 in vivo. These findings reveal for the first time that the HRI-dependent cellular heme-sensing pathway can modulate apoptosis in leukemic cells by repressing MCL-1 and increasing their responsiveness to BH3-mimetics. This signaling pathway could represent a generalizable mechanism for repressing MCL-1 expression in malignant cells and sensitizing them to available therapeutics. IMPLICATIONS: The HRI-dependent cellular heme-sensing pathway can modulate apoptotic sensitivity in leukemic cells by repressing antiapoptotic MCL-1 and increasing their responsiveness to BH3-mimetics.
Collapse
Affiliation(s)
- Kaitlyn H Smith
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Amit Budhraja
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Lynch
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kathryn Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John C Panetta
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jon P Connelly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Meghan E Turnis
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
13
|
RAS-protein activation but not mutation status is an outcome predictor and unifying therapeutic target for high-risk acute lymphoblastic leukemia. Oncogene 2020; 40:746-762. [PMID: 33247204 PMCID: PMC7843419 DOI: 10.1038/s41388-020-01567-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Leukemias are routinely sub-typed for risk/outcome prediction and therapy choice using acquired mutations and chromosomal rearrangements. Down syndrome acute lymphoblastic leukemia (DS-ALL) is characterized by high frequency of CRLF2-rearrangements, JAK2-mutations, or RAS-pathway mutations. Intriguingly, JAK2 and RAS-mutations are mutually exclusive in leukemic sub-clones, causing dichotomy in therapeutic target choices. We prove in a cell model that elevated CRLF2 in combination with constitutionally active JAK2 is sufficient to activate wtRAS. On primary clinical DS-ALL samples, we show that wtRAS-activation is an obligatory consequence of mutated/hyperphosphorylated JAK2. We further prove that CRLF2-ligand TSLP boosts the direct binding of active PTPN11 to wtRAS, providing the molecular mechanism for the wtRAS activation. Pre-inhibition of RAS or PTPN11, but not of PI3K or JAK-signaling, prevented TSLP-induced RAS-GTP boost. Cytotoxicity assays on primary clinical DS-ALL samples demonstrated that, regardless of mutation status, high-risk leukemic cells could only be killed using RAS-inhibitor or PTPN11-inhibitor, but not PI3K/JAK-inhibitors, suggesting a unified treatment target for up to 80% of DS-ALL. Importantly, protein activities-based principal-component-analysis multivariate clusters analyzed for independent outcome prediction using Cox proportional-hazards model showed that protein-activity (but not mutation-status) was independently predictive of outcome, demanding a paradigm-shift in patient-stratification strategy for precision therapy in high-risk ALL.
Collapse
|
14
|
Tomii T, Imamura T, Tanaka K, Kato I, Mayumi A, Soma E, Yano M, Sakamoto K, Mikami T, Morita M, Kiyokawa N, Horibe K, Adachi S, Nakahata T, Takita J, Hosoi H. Leukemic cells expressing NCOR1-LYN are sensitive to dasatinib in vivo in a patient-derived xenograft mouse model. Leukemia 2020; 35:2092-2096. [PMID: 33199837 DOI: 10.1038/s41375-020-01091-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/05/2020] [Accepted: 10/31/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Toshihiro Tomii
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Kuniaki Tanaka
- Department of Pediatrics, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Kyoto University, Kyoto, Japan
| | - Azusa Mayumi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Emi Soma
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mio Yano
- Department of Pediatrics, Kyoto City Hospital, Kyoto, Japan
| | - Kenichi Sakamoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Mikami
- Department of Pediatrics, Kyoto University, Kyoto, Japan
| | - Makiko Morita
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsutoshi Nakahata
- Drug Discovery Technology Development Office, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Kyoto University, Kyoto, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Oya S, Morishige S, Ozawa H, Sasaki K, Semba Y, Yamasaki Y, Nakamura T, Aoyama K, Seki R, Mouri F, Osaki K, Miyamoto T, Maeda T, Nagafuji K. Beneficial tyrosine kinase inhibitor therapy in a patient with relapsed BCR-ABL1-like acute lymphoblastic leukemia with CCDC88C-PDGFRB fusion. Int J Hematol 2020; 113:285-289. [PMID: 32951102 DOI: 10.1007/s12185-020-03006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
BCR-ABL1-like acute lymphoblastic leukemia (ALL) is a neoplasm of lymphoblasts committed to the B-cell lineage that lack the BCR-ABL1 translocation but show a pattern of gene expression very similar to that seen in ALL with BCR-ABL1 with poor prognosis. A 22-year-old female was diagnosed with common-B-cell-ALL positive for CD10, CD19, CD22, CD79a, CD34, HLA-DR, and TdT in January 2017, and achieved complete remission (CR) with induction therapy, followed by consolidation therapy and maintenance therapy. In March 2020, 6 months after the completion of maintenance therapy, she relapsed. Inotuzumab ozogamicin (IO) was administered, and on day 28, bone marrow evaluation showed a morphologic CR. She had an HLA-identical sibling, and transplantation in her 2nd CR was planned. Because her ALL had been identified as BCR-ABL1-like ALL with CCDC88C-PDGFRB fusion, she was treated with imatinib for 2 months accompanied by 2 intrathecal methotrexate therapies, and 1 course of L-asparaginase, vincristine, and prednisolone in an outpatient setting. MRD analysis revealed potent efficacy of 2 months imatinib therapy; IgH MRD decreased from 1 × 10-2 to 1 × 10-3, and CCDC88C-PDGFRB/104ABL from 37.3 to 0. It is earnestly desired that well-designed clinical trials of TKI in ABL class-mutant BCR-ABL1-like ALL be conducted in Japan.
Collapse
Affiliation(s)
- Shuki Oya
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Satoshi Morishige
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hidetoshi Ozawa
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Kensuke Sasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Yoshitaka Yamasaki
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Takayuki Nakamura
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Kazutoshi Aoyama
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Ritsuko Seki
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Fumihiko Mouri
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Koichi Osaki
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Takahiro Maeda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The treatment of acute lymphoblastic leukemia (ALL) in adolescent and young adult (AYA) patients has markedly improved with the adoption of pediatric-inspired protocols. However, there remain several subtypes of ALL that represent significant therapeutic challenges. Here, we review the current evidence guiding treatment of Philadelphia chromosome-positive (Ph+), Philadelphia chromosome-like (Ph-L), and early T-precursor (ETP) ALL in the AYA population. RECENT FINDINGS Clinical trials in Ph + ALL have demonstrated the superior efficacy of second- and third-generation tyrosine kinase inhibitors (TKIs) to induce and maintain remission. Current efforts now focus on determining the durability of these remissions and which patients will benefit from transplant. For Ph-like and ETP ALL, recent studies are investigating the addition of novel agents to standard treatment. The treatment of Ph + ALL has significantly improved with the addition of potent TKIs. However, the treatment of Ph-like and ETP ALL remains a challenge. At this time, the judicious use of allogenic transplant is the only current approach to modify this increased risk.
Collapse
|
17
|
Dai HP, Yin J, Li Z, Yang CX, Cao T, Chen P, Zong YH, Zhu MQ, Zhu XM, Xiao S, Wu DP, Tang XW. Rapid Molecular Response to Dasatinib in a Pediatric Relapsed Acute Lymphoblastic Leukemia With NCOR1-LYN Fusion. Front Oncol 2020; 10:359. [PMID: 32266142 PMCID: PMC7098965 DOI: 10.3389/fonc.2020.00359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/02/2020] [Indexed: 01/27/2023] Open
Abstract
Background: Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is associated with high rates of treatment failure and poor outcome. Activation of ABL/Src family kinases is found in ~10% of Ph-like ALL, which can be therapeutically targeted by tyrosine kinase inhibitors. LYN is a member of the ABL/Src-tyrosine kinase family. Somatic LYN rearrangements are found in 5 cases of hematopoietic malignancies so far, although none of them were treated with tyrosine kinase inhibitors. Case presentation: A 6-year-old boy with relapsed B-ALL had no response to reinduction chemotherapy. He was then treated with the ABL1 tyrosine kinase inhibitor dasatinib and achieved complete remission within 2 weeks. Haploidentical allogenic stem cell transplantation (allo-HSCT) was subsequently performed and maintenance therapy with dasatinib initiated 8 weeks post-transplantation. He has been in minimal residual disease negative remission for 10 months after allo-HSCT. Result: His bone marrow karyotype showed a balanced translocation between chromosomes 8 and 17, leading to a NCOR1-LYN fusion gene confirmed with sequencing. Conclusion: Although LYN overexpression is described in many AML and B-ALL patients, intragenic LYN rearrangement is a rare event. For the first time, we present evidence that dasatinib is effective in treating a pediatric B-ALL with NCOR-LYN fusion.
Collapse
Affiliation(s)
- Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jia Yin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zheng Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | | | - Tin Cao
- Sano Suzhou Precision Medicine Co., Ltd., Suzhou, China
| | - Ping Chen
- Sano Suzhou Precision Medicine Co., Ltd., Suzhou, China
| | - Yun-Hui Zong
- Sano Suzhou Precision Medicine Co., Ltd., Suzhou, China
| | - Ming-Qing Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xia-Ming Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Sheng Xiao
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiao-Wen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
18
|
Harvey RC, Tasian SK. Clinical diagnostics and treatment strategies for Philadelphia chromosome-like acute lymphoblastic leukemia. Blood Adv 2020; 4:218-228. [PMID: 31935290 PMCID: PMC6960477 DOI: 10.1182/bloodadvances.2019000163] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Philadelphia chromosome-like B-cell acute lymphoblastic leukemia (Ph-like ALL) accounts for 15% to 30% of B-cell acute lymphoblastic leukemia in older children, adolescents, and adults and is associated with high rates of conventional treatment failure and relapse. Current clinical trials are assessing the efficacy of the addition of tyrosine kinase inhibitors (TKIs) to chemotherapy for children and adults with Ph-like ALL harboring ABL class translocations or CRLF2 rearrangements and other JAK pathway alterations. However, real-time diagnosis of patients can be quite challenging given the genetic heterogeneity of this disease and the often cytogenetically cryptic nature of Ph-like ALL-associated alterations. In this review, we discuss the complex biologic and clinical features of Ph-like ALL across the age spectrum, available diagnostic testing modalities, and current clinical treatment strategies for these high-risk patients. We further propose a practical and step-wise approach to Ph-like ALL genetic testing to facilitate the identification and allocation of patients to appropriate clinical trials of TKI-based therapies or commercially available drugs. Although the majority of patients with Ph-like ALL can be successfully identified via current clinical assays by the end of induction chemotherapy, increasing diagnostic efficiency and sensitivity and decreasing time to test resulting will facilitate earlier therapeutic intervention and may improve clinical outcomes for these high-risk patients.
Collapse
Affiliation(s)
- Richard C Harvey
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA; and
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
19
|
Advani AS, Copelan EA. Navigating the nexus of MRD and novel agents in ALL. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:9-16. [PMID: 31808877 PMCID: PMC6913439 DOI: 10.1182/hematology.2019000008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The landscape of acute lymphoblastic leukemia (ALL) has evolved significantly over the last few years. Identification of specific recurrent genetic alterations and of minimal residual disease (MRD) guides prognostic classification and management. Novel agents (eg, blinatumomab) have demonstrated encouraging results in relapsed/refractory (R/R) and MRD+ patients and are currently incorporated into upfront treatment in specific settings. Other new strategies include the incorporation of tyrosine kinase inhibitor-based therapy for patients with Philadelphia chromosome-like ALL and the use of DOT inhibitors and bcl-2/bcl-xl inhibitors in R/R disease. These innovations promise to improve management and outcome in this disease.
Collapse
Affiliation(s)
- Anjali S Advani
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; and
| | | |
Collapse
|
20
|
|
21
|
Jain S, Abraham A. BCR-ABL1-like B-Acute Lymphoblastic Leukemia/Lymphoma: A Comprehensive Review. Arch Pathol Lab Med 2019; 144:150-155. [PMID: 31644323 DOI: 10.5858/arpa.2019-0194-ra] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— In the 2016 update of the World Health Organization (WHO) classification of hematopoietic neoplasms, BCR-ABL1-like B-acute lymphoblastic leukemia/lymphoma (B-ALL) is added as a new provisional entity that lacks the BCR-ABL1 translocation but shows a pattern of gene expression very similar to that seen in B-ALL with BCR-ABL1. OBJECTIVE.— To review the kinase-activating alterations and the diagnostic approach for BCR-ABL1-like B-ALL. DATA SOURCES.— We provide a comprehensive review of BCR-ABL1-like B-ALL based on recent literature and the 2016 update of the World Health Organization classification of hematopoietic neoplasms. CONCLUSIONS.— Several types of kinase-activating alterations (fusions or mutations) are identified in BCR-ABL1-like B-ALL. The main categories are alterations in the ABL class family of genes, encompassing ABL1, ABL2, PDGFRB, PDGFRA (rare), and colony-stimulating factor 1 receptor (CSF1R) fusions, or the JAK2 class family of genes, encompassing alterations in JAK2, CRLF2, EPOR, and other genes in this pathway. These alterations determine the sensitivity to tyrosine kinase inhibitors. As a wide variety of genomic alterations are included in this category, the diagnosis of BCR-ABL1-like B-ALL is extremely complex. Stepwise algorithms and comprehensive unbiased testing are the 2 ways to approach the diagnosis of BCR-ABL1-like B-ALL.
Collapse
Affiliation(s)
- Sarika Jain
- From the Department of Pathology, University of Mississippi Medical Center, Jackson
| | - Anu Abraham
- From the Department of Pathology, University of Mississippi Medical Center, Jackson
| |
Collapse
|
22
|
|