1
|
Glasser CL, Chen J. Harnessing the Immune System: Current and Emerging Immunotherapy Strategies for Pediatric Acute Lymphoblastic Leukemia. Biomedicines 2023; 11:1886. [PMID: 37509525 PMCID: PMC10377227 DOI: 10.3390/biomedicines11071886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Treatment for relapsed acute lymphoblastic leukemia (ALL) in children and young adults continues to evolve. Despite optimization of cytotoxic chemotherapeutic approaches and risk-adapted therapy, about 12% of pediatric patients still relapse, and survival rates in this population remain poor. Salvage therapy for relapsed patients continues to be challenging as attempts to further intensify chemotherapy have resulted in excessive toxicity without improving outcomes. Immunotherapy has profoundly impacted the landscape of relapsed ALL by harnessing the patient's immune system to target and eliminate leukemia cells. In this review, we provide an overview and summary of immunotherapy agents that have been approved and remain under investigation for children, including blinatumomab, inotuzumab, daratumomab, and chimeric antigen receptor T-cell therapy. We discuss the landmark clinical trials that have revolutionized the field and provide an update on ongoing clinical trials involving these agents for children in the relapsed and upfront setting. The incorporation of these novel immunotherapies into ALL treatment, either as monotherapy or in combination with cytotoxic chemotherapy, has demonstrated promising potential to augment outcomes while decreasing toxicity. However, we also highlight the many challenges we still face and the research critically needed to achieve our goals for cure in children.
Collapse
Affiliation(s)
- Chana L Glasser
- Department of Pediatric Hematology/Oncology, NYU Langone Hospital, Mineola, NY 11501, USA
| | - Jing Chen
- Department of Pediatric Hematology/Oncology, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| |
Collapse
|
2
|
Duffield AS, Mullighan CG, Borowitz MJ. International Consensus Classification of acute lymphoblastic leukemia/lymphoma. Virchows Arch 2023; 482:11-26. [PMID: 36422706 PMCID: PMC10646822 DOI: 10.1007/s00428-022-03448-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
The updated International Consensus Classification (ICC) of B-acute lymphoblastic leukemia (B-ALL) and T-acute lymphoblastic leukemia (T-ALL) includes both revisions to subtypes previously outlined in the 2016 WHO classification and several newly described entities. The ICC classification incorporates recent clinical, cytogenetic, and molecular data, with a particular emphasis on whole transcriptome analysis and gene expression (GEX) clustering studies. B-ALL classification is modified to further subclassify BCR::ABL1-positive B-ALL and hypodiploid B-ALL. Additionally, nine new categories of B-ALL are defined, including seven that contain distinguishing gene rearrangements, as well as two new categories that are characterized by a specific single gene mutation. Four provisional entities are also included in the updated B-ALL classification, although definitive identification of these subtypes requires GEX studies. T-ALL classification is also updated to incorporate BCL11B-activating rearrangements into early T-precursor (ETP) ALL taxonomy. Additionally, eight new provisional entities are added to the T-ALL subclassification. The clinical implications of the new entities are discussed, as are practical approaches to the use of different technologies in diagnosis. The enhanced specificity of the new classification will allow for improved risk stratification and optimized treatment plans for patients with ALL.
Collapse
Affiliation(s)
- Amy S. Duffield
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
3
|
Nuclear Vav3 is required for polycomb repression complex-1 activity in B-cell lymphoblastic leukemogenesis. Nat Commun 2022; 13:3056. [PMID: 35650206 PMCID: PMC9160250 DOI: 10.1038/s41467-022-30651-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/10/2022] [Indexed: 12/23/2022] Open
Abstract
Acute B-cell lymphoblastic leukemia (B-ALL) results from oligo-clonal evolution of B-cell progenitors endowed with initiating and propagating leukemia properties. The activation of both the Rac guanine nucleotide exchange factor (Rac GEF) Vav3 and Rac GTPases is required for leukemogenesis mediated by the oncogenic fusion protein BCR-ABL. Vav3 expression becomes predominantly nuclear upon expression of BCR-ABL signature. In the nucleus, Vav3 interacts with BCR-ABL, Rac, and the polycomb repression complex (PRC) proteins Bmi1, Ring1b and Ezh2. The GEF activity of Vav3 is required for the proliferation, Bmi1-dependent B-cell progenitor self-renewal, nuclear Rac activation, protein interaction with Bmi1, mono-ubiquitination of H2A(K119) (H2AK119Ub) and repression of PRC-1 (PRC1) downstream target loci, of leukemic B-cell progenitors. Vav3 deficiency results in de-repression of negative regulators of cell proliferation and repression of oncogenic transcriptional factors. Mechanistically, we show that Vav3 prevents the Phlpp2-sensitive and Akt (S473)-dependent phosphorylation of Bmi1 on the regulatory residue S314 that, in turn, promotes the transcriptional factor reprogramming of leukemic B-cell progenitors. These results highlight the importance of non-canonical nuclear Rho GTPase signaling in leukemogenesis. Ph+ and Ph-like B-ALL remain poor prognosis leukemias. VAV3, a guanine nucleotide exchange factor, is activated and overexpressed in these leukemias. Here the authors reveal that leukemic VAV3 is predominantly nuclear. Nuclear VAV3, through its guanine nucleotide exchange factor and its effector nuclear RAC2, controls the repressive transcriptional activity of the polycomb repression complex-1 via nuclear AKT/PHLPP2 regulated BMI1.
Collapse
|
4
|
Podgornik H, Doplihar Kebe A, Klun J, Reberšek K, Šućurović S, Škerget M, Zver S. Recognition of Philadelphia chromosome-like acute lymphoblastic leukemia as part of routine diagnostic work-up. Int J Lab Hematol 2021; 44:142-149. [PMID: 34491616 DOI: 10.1111/ijlh.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL) is a biologically and clinically challenging subtype of B-cell ALL which has been incorporated into the 2016 revision of the World Health classification of acute leukemia. It is independently associated with poor outcome. As it can only be reliably detected by expression profiling, it is difficult to diagnose with routine methods. Its recognition has become of greater importance due to prognostication and even more due to the new diagnostic options given by targeted therapies. There is still no standardized diagnostic test enabling its prompt recognition. Here, we introduce our approach how to detect it by combination of widely available techniques. METHODS 179 ALL patients diagnosed in our center during the last 8 years were included. Data on immunophenotype and cytogenetics were used to select patients with potentially Ph-like ALL (65/179). CRLF2 gene rearrangement (CRLF2-r) was tested by FISH in 59/65 patients, and next-generation sequencing was done by Archer FusionPlex ALL kit in 34 patients. TSLPR expression was determined in 20 patients. RESULTS Philadelphia chromosome-like aberrations were confirmed in 9 patients. In 10% of tested samples, CRLF2-r was confirmed. Due to a lack of material, NGS was done only in a half of potentially Ph-like cases. In 10%, other Ph-like fusions were found by NGS. CONCLUSIONS The obtained frequencies, and genetic and patients' characteristics are in concordance with the literature data, ensuring a reliable detection of this challenging ALL subtype. The proposed algorithm allows detection of Ph-like ALL at reasonable cost and acceptable workload.
Collapse
Affiliation(s)
- Helena Podgornik
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Doplihar Kebe
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jurka Klun
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katarina Reberšek
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Sandra Šućurović
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matevž Škerget
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Samo Zver
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Ansuinelli M, Cesini L, Chiaretti S, Foà R. Emerging tyrosine kinase inhibitors for the treatment of adult acute lymphoblastic leukemia. Expert Opin Emerg Drugs 2021; 26:281-294. [PMID: 34259120 DOI: 10.1080/14728214.2021.1956462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: The broadening of targeted and immunotherapeutic strategies markedly impacted on the management of acute lymphoblastic leukemia (ALL). The advent of tyrosine kinase inhibitors (TKIs) changed the history of Philadelphia-chromosome positive (Ph+) ALL. Nowadays, almost all Ph+ ALL patients treated with TKIs achieve a complete hematologic response, and most become minimal residual disease negative. In Ph- ALL, genomic profiling studies have identified a subtype associated with a high relapse risk and a transcriptional profile similar to that of Ph+ ALL, the so-called Ph-like ALL. Given the high prevalence of kinase-activating lesions in this subset, there is compelling evidence from experimental models and clinical observations favoring TKI administration.Areas covered: We discuss the main findings exploring the efficacy of TKIs in ALL.Expert opinion: The use of more potent TKIs will further enhance the inhibitory activity on leukemia cells and increase the possibility of eradicating the disease at a molecular level. In the future, 'combined' approaches of different inhibitors may be considered to prevent/avoid resistance and/or mutations. A rapid identification of Ph-like ALL patients is needed to propose early TKI-based intervention. Several questions remain open, including the initial TKI choice in Ph+ ALL and whether Ph-like ALL patients might benefit from immunotherapy.
Collapse
Affiliation(s)
- Michela Ansuinelli
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Laura Cesini
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
6
|
Smith KH, Budhraja A, Lynch J, Roberts K, Panetta JC, Connelly JP, Turnis ME, Pruett-Miller SM, Schuetz JD, Mullighan CG, Opferman JT. The Heme-Regulated Inhibitor Pathway Modulates Susceptibility of Poor Prognosis B-Lineage Acute Leukemia to BH3-Mimetics. Mol Cancer Res 2020; 19:636-650. [PMID: 33288732 DOI: 10.1158/1541-7786.mcr-20-0586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/28/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
Antiapoptotic MCL1 is one of the most frequently amplified genes in human cancers and elevated expression confers resistance to many therapeutics including the BH3-mimetic agents ABT-199 and ABT-263. The antimalarial, dihydroartemisinin (DHA) translationally represses MCL-1 and synergizes with BH3-mimetics. To explore how DHA represses MCL-1, a genome-wide CRISPR screen identified that loss of genes in the heme synthesis pathway renders mouse BCR-ABL+ B-ALL cells resistant to DHA-induced death. Mechanistically, DHA disrupts the interaction between heme and the eIF2α kinase heme-regulated inhibitor (HRI) triggering the integrated stress response. Genetic ablation of Eif2ak1, which encodes HRI, blocks MCL-1 repression in response to DHA treatment and represses the synergistic killing of DHA and BH3-mimetics compared with wild-type leukemia. Furthermore, BTdCPU, a small-molecule activator of HRI, similarly triggers MCL-1 repression and synergizes with BH3-mimetics in mouse and human leukemia including both Ph+ and Ph-like B-ALL. Finally, combinatorial treatment of leukemia bearing mice with both BTdCPU and a BH3-mimetic extended survival and repressed MCL-1 in vivo. These findings reveal for the first time that the HRI-dependent cellular heme-sensing pathway can modulate apoptosis in leukemic cells by repressing MCL-1 and increasing their responsiveness to BH3-mimetics. This signaling pathway could represent a generalizable mechanism for repressing MCL-1 expression in malignant cells and sensitizing them to available therapeutics. IMPLICATIONS: The HRI-dependent cellular heme-sensing pathway can modulate apoptotic sensitivity in leukemic cells by repressing antiapoptotic MCL-1 and increasing their responsiveness to BH3-mimetics.
Collapse
Affiliation(s)
- Kaitlyn H Smith
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Amit Budhraja
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Lynch
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kathryn Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John C Panetta
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jon P Connelly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Meghan E Turnis
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|