1
|
Bibbal D, Um MM, Diallo AA, Kérourédan M, Dupouy V, Toutain PL, Bousquet-Mélou A, Oswald E, Brugère H. Mixing of Shiga toxin-producing and enteropathogenic Escherichia coli in a wastewater treatment plant receiving city and slaughterhouse wastewater. Int J Hyg Environ Health 2017; 221:355-363. [PMID: 29307571 DOI: 10.1016/j.ijheh.2017.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 11/28/2022]
Abstract
Wastewater of human and animal may contain Shiga toxin-producing (STEC) and enteropathogenic (EPEC) Escherichia coli. We evaluated the prevalence of such strains in a wastewater treatment plant (WWTP) receiving both city and slaughterhouse wastewater. PCR screenings were performed on 12,248 E. coli isolates. The prevalence of STEC in city wastewater, slaughterhouse wastewater and treated effluent was 0.22%, 0.07% and 0.22%, respectively. The prevalence of EPEC at the same sampling sites was 0.63%, 0.90% and 0.55%. No significant difference was observed between the sampling points. Treatment had no impact on these prevalences. Enterohemorrhagic E. coli (EHEC) O157:H7 and O111:H8 were isolated from the treated effluent rejected into the river. The characteristics of STEC and EPEC differed according to their origin. City wastewater contained STEC with various stx subtypes associated with serious human disease, whereas slaughterhouse wastewater contained exclusively STEC with stx2e subtype. All the EPEC strains were classified as atypical and were screened for the ε, γ1 and β1 subtypes, known to be associated with the EHEC mainly involved in human infections in France. In city wastewater, eae subtypes remained largely unidentified; whereas eae-β1 was the most frequent subtype in slaughterhouse wastewater. Moreover, the EPEC isolated from slaughterhouse wastewater were positive for other EHEC-associated virulence markers, including top five serotypes, the ehxA gene, putative adherence genes and OI-122 associated genes. The possibility that city wastewater could contain a pool of stx genes associated with human disease and that slaughterhouse wastewater could contain a pool of EPEC sharing similar virulence genes with EHEC, was highlighted. Mixing of such strains in WWTP could lead to the emergence of EHEC by horizontal gene transfer.
Collapse
Affiliation(s)
- Delphine Bibbal
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.
| | - Maryse Michèle Um
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Alpha Amadou Diallo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France; ISRA/LNERV, Dakar-Hann, Senegal
| | | | - Véronique Dupouy
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France; CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Hubert Brugère
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
2
|
Diallo AA, Brugère H, Kérourédan M, Dupouy V, Toutain PL, Bousquet-Mélou A, Oswald E, Bibbal D. Persistence and prevalence of pathogenic and extended-spectrum beta-lactamase-producing Escherichia coli in municipal wastewater treatment plant receiving slaughterhouse wastewater. WATER RESEARCH 2013; 47:4719-4729. [PMID: 23774186 DOI: 10.1016/j.watres.2013.04.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/09/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
We compared the prevalence of pathogenic and extended-spectrum beta-lactamase (ESBL) - producing Escherichia coli in effluents of a municipal wastewater treatment plant (WWTP) receiving wastewater from a slaughterhouse. A total of 1248 isolates were screened for the presence of virulence genes associated with enterohemorrhagic E. coli (EHEC) (stx1, stx2, and eae) and extraintestinal pathogenic E. coli (ExPEC) (sfa/focDE, kpsMT K1, hlyA, papEF, afa/draBC, clbN, f17A and cnf). The prevalence of atypical enteropathogenic E. coli (EPEC) was 0.7%, 0.2% and 0.5% in city wastewater, slaughterhouse wastewater and in the treated effluent, respectively. One stx1a and stx2b-positive E. coli isolate was detected in city wastewater. The prevalence of ExPEC was significantly higher in city wastewater (8.4%), compared to slaughterhouse wastewater (1.2%). Treatment in the WWTP did not significantly impact the prevalence of ExPEC in the outlet effluent (5.0%) compared to city wastewater. Moreover, the most potentially pathogenic ExPEC were isolated from city wastewater and from the treated effluent. ESBL-producing E. coli was also mainly detected in city wastewater (1.7%), compared to slaughterhouse wastewater (0.2%), and treated effluent (0.2%). One ESBL-producing E. coli, isolated from city wastewater, was eae-β1 positive. These results showed that pathogenic and/or ESBL-producing E. coli were mainly detected in human wastewater, and at a lesser extend in animal wastewater. Treatment failed to eliminate these strains which were discharged into the river, and then these strains could be transmitted to animals and humans via the environment.
Collapse
|