1
|
Cardozo FA, Feitosa V, Mendonça CMN, da Silva FVS, Converti A, de Souza Oliveira RP, Pessoa A. Enhanced production of N-acetyl-glucosaminidase by marine Aeromonas caviae CHZ306 in bioreactor. Braz J Microbiol 2023; 54:1533-1545. [PMID: 37610567 PMCID: PMC10485184 DOI: 10.1007/s42770-023-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
N-Acetyl-glucosaminidases (GlcNAcases) are exoenzymes found in a wide range of living organisms, which have gained great attention in the treatment of disorders related to diabetes, Alzheimer's, Tay-Sachs', and Sandhoff's diseases; the control of phytopathogens; and the synthesis of bioactive GlcNAc-containing products. Aiming at future industrial applications, in this study, GlcNAcase production by marine Aeromonas caviae CHZ306 was enhanced first in shake flasks in terms of medium composition and then in bench-scale stirred-tank bioreactor in terms of physicochemical conditions. Stoichiometric balance between the bioavailability of carbon and nitrogen in the formulated culture medium, as well as the use of additional carbon and nitrogen sources, played a central role in improving the bioprocess, considerably increasing the enzyme productivity. The optimal cultivation medium was composed of colloidal α-chitin, corn steep liquor, peptone A, and mineral salts, in a 5.2 C:N ratio. Optimization of pH, temperature, colloidal α-chitin concentration, and kLa conditions further increased GlcNAcase productivity. Under optimized conditions in bioreactor (i.e., 34 °C, pH 8 and kLa 55.2 h-1), GlcNAcase activity achieved 173.4 U.L-1 after 12 h of cultivation, and productivity no less than 14.45 U.L-1.h-1 corresponding to a 370-fold enhancement compared to basal conditions.
Collapse
Affiliation(s)
- Flávio Augusto Cardozo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil.
| | - Valker Feitosa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
- Departamento de Medicina e Enfermagem, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, Brasil
| | - Carlos Miguel Nóbrega Mendonça
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
- CICECO - Instituto de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Francisco Vitor Santos da Silva
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
| | - Attilio Converti
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
- Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università di Genova, Genova, Italia
| | | | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
2
|
Garcia-Ochoa F, Gomez E, Santos VE. Fluid dynamic conditions and oxygen availability effects on microbial cultures in STBR: An overview. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Effects of fluid-dynamic conditions in Shimwellia blattae (p424IbPSO) cultures in stirred tank bioreactors: Hydrodynamic stress and change of metabolic routes by oxygen availability. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Lopes C, dos Santos NV, Dupont J, Pedrolli DB, Valentini SR, Santos‐Ebinuma V, Pereira JFB. Improving the cost effectiveness of enhanced green fluorescent protein production using recombinantEscherichia coliBL21 (DE3): Decreasing the expression inducer concentration. Biotechnol Appl Biochem 2019; 66:527-536. [DOI: 10.1002/bab.1749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Camila Lopes
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Nathalia Vieira dos Santos
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Jana Dupont
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
- Faculty of Bioscience EngineeringGent University Gent Belgium
| | - Danielle Biscaro Pedrolli
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Sandro Roberto Valentini
- Department of Biological SciencesSchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Valéria Santos‐Ebinuma
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Jorge Fernando Brandão Pereira
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
5
|
Wang CC, Wu JY, Chang CY, Yu ST, Liu YC. Enhanced exopolysaccharide production by Cordyceps militaris using repeated batch cultivation. J Biosci Bioeng 2019; 127:499-505. [DOI: 10.1016/j.jbiosc.2018.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023]
|
6
|
Dumorné K, Severe R. Marine enzymes and their industrial and biotechnological applications. MINERVA BIOTECNOL 2018. [DOI: 10.23736/s1120-4826.18.02442-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Rodriguez A, Escobar S, Gomez E, Santos VE, Garcia-Ochoa F. Behavior of several pseudomonas putida
strains growth under different agitation and oxygen supply conditions. Biotechnol Prog 2018; 34:900-909. [DOI: 10.1002/btpr.2634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/21/2018] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Emilio Gomez
- Chemical Engineering Department; Universidad Complutense; Madrid Spain
| | | | | |
Collapse
|
8
|
Escobar S, Rodriguez A, Gomez E, Alcon A, Santos VE, Garcia-Ochoa F. Influence of oxygen transfer on Pseudomonas putida effects on growth rate and biodesulfurization capacity. Bioprocess Biosyst Eng 2016; 39:545-54. [PMID: 26762940 DOI: 10.1007/s00449-016-1536-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
The growth rate and desulfurization capacity accumulated by the cells during the growth of Pseudomonas putida KTH2 under different oxygen transfer conditions in a stirred and sparged tank bioreactor have been studied. Hydrodynamic conditions were changed using different agitation conditions. During the culture, several magnitudes associated to growth, such as the specific growth rate, the dissolved oxygen concentration and the carbon source consumption have been measured. Experimental results indicate that cultures are influenced by the fluid dynamic conditions into the bioreactor. An increase in the stirrer speed from 400 to 700 rpm has a positive influence on the cell growth rate. Nevertheless, the increase of agitation from 700 to 2000 rpm hardly has any influence on the growth rate. The effect of fluid dynamics on the cells development of the biodesulfurization (BDS) capacity of the cells during growth is different. The activities of the intracellular enzymes involved in the 4S pathway change with dissolved oxygen concentration. The enzyme activities have been evaluated in cells at several growth time and different hydrodynamic conditions. An increase of the agitation from 100 to 300 rpm has a positive influence on the development of the overall BDS capacity of the cells during growth. This capacity shows a decrease for higher stirrer speeds and the activity of the enzymes monooxygenases DszC and DszA decreases dramatically. The highest value of the activity of DszB enzyme was obtained with cells cultured at 100 rpm, while this activity decreases when the stirrer speed was increased higher than this value.
Collapse
Affiliation(s)
- S Escobar
- Chemical Engineering Department, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - A Rodriguez
- Chemical Engineering Department, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - E Gomez
- Chemical Engineering Department, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - A Alcon
- Chemical Engineering Department, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - V E Santos
- Chemical Engineering Department, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Felix Garcia-Ochoa
- Chemical Engineering Department, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
9
|
Enzymatic properties of chitinase-producing antagonistic bacterium Paenibacillus chitinolyticus with various substrates. Microb Pathog 2015; 89:195-200. [DOI: 10.1016/j.micpath.2015.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/25/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022]
|
10
|
Gomez E, Alcon A, Escobar S, Santos V, Garcia-Ochoa F. Effect of fluiddynamic conditions on growth rate and biodesulfurization capacity of Rhodococcus erythropolis IGTS8. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Specific oxygen uptake rate as indicator of cell response of Rhodococcus erythropolis cultures to shear effects. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Stoykov YM, Pavlov AI, Krastanov AI. Chitinase biotechnology: Production, purification, and application. Eng Life Sci 2014. [DOI: 10.1002/elsc.201400173] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yuriy Mihaylov Stoykov
- Laboratory of Applied Biotechnologies; Stephan Angeloff Institute of Microbiology; Bulgarian Academy of Science; Plovdiv Bulgaria
| | - Atanas Ivanov Pavlov
- Laboratory of Applied Biotechnologies; Stephan Angeloff Institute of Microbiology; Bulgarian Academy of Science; Plovdiv Bulgaria
- Department of Analytical Chemistry; University of Food Technology; Plovdiv Bulgaria
| | | |
Collapse
|
13
|
Chew FN, Tan WS, Boo HC, Tey BT. Statistical optimization of green fluorescent protein production from Escherichia coli BL21(DE3). Prep Biochem Biotechnol 2013; 42:535-50. [PMID: 23030465 DOI: 10.1080/10826068.2012.660903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An optimized cultivation condition is needed to maximize the functional green fluorescent protein (GFP) production. Six process variables (agitation rate, temperature, initial medium pH, concentration of inducer, time of induction, and inoculum density) were screened using the fractional factorial design. Three variables (agitation rate, temperature, and time of induction) exerted significant effects on functional GFP production in E. coli shake flask cultivation and were optimized subsequently using the Box-Behnken design. An agitation rate of 206 rpm at 31°C and induction of the protein expression when the cell density (OD(600nm)) reaches 1.04 could enhance the yield of functional GFP production from 0.025 g/L to 0.241 g/L, which is about ninefold higher than the unoptimized conditions. Unoptimized cultivation conditions resulted in protein aggregation and hence reduced the quantity of functional GFP. The model and regression equation based on the shake flask cultivation could be applied to a 2-L bioreactor for maximum functional GFP production.
Collapse
Affiliation(s)
- Few Ne Chew
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
| | | | | | | |
Collapse
|
14
|
Garcia-Ochoa F, Gomez E, Alcon A, Santos VE. The effect of hydrodynamic stress on the growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor. Bioprocess Biosyst Eng 2012; 36:911-25. [DOI: 10.1007/s00449-012-0825-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 09/05/2012] [Indexed: 12/27/2022]
|
15
|
Rahulan R, Dhar KS, Madhavan Nampoothiri K, Pandey A. Production of leucine amino peptidase in lab scale bioreactors using Streptomyces gedanensis. BIORESOURCE TECHNOLOGY 2011; 102:8171-8178. [PMID: 21733679 DOI: 10.1016/j.biortech.2011.06.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
Studies were conducted on the production of leucine amino peptidase (LAP) by Streptomyces gedanensis to ascertain the performance of the process in shake flask, parallel fermenter and 5-L fermenter utilizing soy bean meal as the carbon source. Experiments were conducted to analyze the effects of aeration and agitation rate on cell growth and LAP production. The results unveiled that an agitation rate of 300 rpm, 50% dissolved oxygen (DO) upholding and 0.15 vvm strategies were the optimal for the enzyme production, yielding 22.72 ± 0.11 IU/mL LAP in parallel fermenter which was comparable to flask level (24.65 ± 0.12 IU/mL LAP) fermentation. Further scale-up, in 5-L fermenter showed 50% DO and 1 vvm aeration rate was the best, producing optimum and the production was 20.09 ± 0.06 IU/mL LAP. The information obtained could be useful to design a strategy to improve a large-scale bioreactor cultivation of cells and production of LAP.
Collapse
Affiliation(s)
- Raji Rahulan
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | | | | | | |
Collapse
|
16
|
Chen HB, Kao PM, Huang HC, Shieh CJ, Chen CI, Liu YC. Effects of using various bioreactors on chitinolytic enzymes production by Paenibacillus taichungensis. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Bioprocessing data for the production of marine enzymes. Mar Drugs 2010; 8:1323-72. [PMID: 20479981 PMCID: PMC2866489 DOI: 10.3390/md8041323] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/31/2010] [Accepted: 04/12/2010] [Indexed: 11/21/2022] Open
Abstract
This review is a synopsis of different bioprocess engineering approaches adopted for the production of marine enzymes. Three major modes of operation: batch, fed-batch and continuous have been used for production of enzymes (such as protease, chitinase, agarase, peroxidase) mainly from marine bacteria and fungi on a laboratory bioreactor and pilot plant scales. Submerged, immobilized and solid-state processes in batch mode were widely employed. The fed-batch process was also applied in several bioprocesses. Continuous processes with suspended cells as well as with immobilized cells have been used. Investigations in shake flasks were conducted with the prospect of large-scale processing in reactors.
Collapse
|
18
|
Iyer PV, Singhal RS. Glutaminase Production using Zygosaccharomyces rouxii NRRL-Y 2547: Effect of Aeration, Agitation Regimes and Feeding Strategies. Chem Eng Technol 2010. [DOI: 10.1002/ceat.200900230] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Production of the biocontrol agent Pantoea agglomerans PBC-1 in a stirred tank reactor by batch and fed-batch cultures. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0229-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Akhir S, Abd-Aziz S, Salleh M, Rahman R, Illias R, Hassan M. Medium Optimisation of Chitinase Enzyme Production from Shrimp Waste Using Bacillus licheniformis TH-1 by Response Surface Methods. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/biotech.2009.120.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Production of chitinolytic enzymes by a strain (BM17) of Paenibacillus pabuli isolated from crab shells samples collected in the east sector of central Tyrrhenian Sea. Int J Biol Macromol 2007; 43:27-31. [PMID: 18076982 DOI: 10.1016/j.ijbiomac.2007.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/23/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
Nineteen bacterial isolates were grown in shaken cultures in media containing chitin as carbon source and different additional nitrogen sources such as yeast nitrogen base (YNB), yeast extract (YE), corn steep liquor (CSL) and ammonium sulfate. Strain BM17 showed the highest activity (200 U/l) in medium containing Chitin (1%) and YNB (0.5%). Molecular analysis of the 16S rRNA gene showed that strain BM17 belongs to the species Paenibacillus pabuli (99.72% homology). The enzyme activity started after 12-24 h; exponential enzyme production was recorded from the 24th h and lasted till the 96th h of incubation when activity peaked to decrease thereafter. Medium optimisation was carried out by Response Surface Methodology (RSM) considering the effects of chitin, corn steep liquor and yeast extract. BM17 chitinolytic activity was induced by chitin but the increase of its concentration did not have significant effects on the enzyme activity. By contrast, the nitrogen source, particularly YE, strongly affected the enzyme production.
Collapse
|