1
|
Immobilization of lipase on spent coffee grounds by physical and covalent methods: a comparison study. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
2
|
Danaeifar M. New horizons in developing cell lysis methods: A Review. Biotechnol Bioeng 2022; 119:3007-3021. [PMID: 35900072 DOI: 10.1002/bit.28198] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
Cell lysis is an essential step in many studies related to biology and medicine. Based on the scale and medium that cell lysis is carried out, there are three main types of the cell lysis: 1) lysis of the cells in the surrounding environment, 2) lysis of the isolated or cultured cells and 3) Single cell lysis. Conventionally, several cell lysis methods have been developed, such as freeze-thawing, bead beating, incursion in liquid nitrogen, sonication and enzymatic and chemical based approaches. In recent years, various novel technologies have been employed to develop new methods of cell lysis. The aim of studies in this field is to introduce more precise and efficient tools or to reduce the costs of cell lysis procedures. Nanostructure based lysis methods, acoustic oscillation, electrical current, irradiation, bacteria-mediated cell lysis, magnetic ionic liquids, bacteriophage genes, monolith columns, hydraulic forces and steam explosion are some examples of new developed cell lysis methods. Beside the significant advances in this field, there are still many challenges and the tools must be further improved. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhang H, Jiang Z, Xia Q, Zhou D. Progress and perspective of enzyme immobilization on zeolite crystal materials. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Removal of protein wastes by cylinder-shaped NaY zeolite adsorbents decorated with heavy metal wastes. Int J Biol Macromol 2021; 185:761-772. [PMID: 34216668 DOI: 10.1016/j.ijbiomac.2021.06.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/09/2021] [Accepted: 06/27/2021] [Indexed: 01/01/2023]
Abstract
Cylinder-shaped NaY zeolite was used as an adsorbent for eradicating both heavy metal ions (Cu2+, Zn2+, Ni2+, and Co2+) and proteins from the waste streams. As a pseudo-metal ion affinity adsorbent, NaY zeolite was used in the capture of heavy metal ions in the first stage. The amount (molar basis) of metal ions adsorbed onto NaY zeolite decreased in the order of Cu2+ > Zn2+ > Co2+ > Ni2+. Bovine serum albumin (BSA) was utilized as a model of proteins used in the waste adsorption process by NaY zeolite. The adsorption capacities of NaY zeolite and Cu/NaY zeolite for BSA were 14.90 mg BSA/g zeolite and 84.61 mg BSA/g zeolite, respectively. Moreover, Cu/NaY zeolite was highly stable in the solutions made of 2 M NaCl, 500 mM imidazole or 125 mM EDTA solutions. These conditions indicated that the minimal probability of secondary contamination caused by metal ions and soluble proteins in the waste stream. This study demonstrates the potential of Cu/NaY zeolite complex as an efficient pseudo-metal chelate adsorbent that could remove metal ions and water-soluble proteins from wastewater concurrently.
Collapse
|
5
|
Chaudhary K, Kumar K, Venkatesu P, Masram DT. Protein immobilization on graphene oxide or reduced graphene oxide surface and their applications: Influence over activity, structural and thermal stability of protein. Adv Colloid Interface Sci 2021; 289:102367. [PMID: 33545443 DOI: 10.1016/j.cis.2021.102367] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/06/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
Due to the essential role of biological macromolecules in our daily life; it is important to control the stability and activity of such macromolecules. Therefore, the most promising route for enhancement in stability and activity is immobilizing proteins on different support materials. Furthermore, large surface area and surface functional groups are the important features that are required for a better support system. These features of graphene oxide (GO) and reduced graphene oxide (RGO) makes them ideal support materials for protein immobilization. Studies show the successful formation of GO/RGO-protein complexes with enhancement in structural/thermal stability due to various interactions at the nano-bio interface and their utilization in various functional applications. The present review focuses on protein immobilization using GO/RGO as solid support materials. Moreover, we also emphasized on basic underlying mechanism and interactions (hydrophilic, hydrophobic, electrostatic, local protein-protein, hydrogen bonding and van der Walls) between protein and GO/RGO which influences structural stability and activity of enzymes/proteins. Furthermore, GO/RGO-protein complexes are utilized in various applications such as biosensors, bioimaging and theranostic agent, targeted drug delivery agents, and nanovectors for drug and protein delivery.
Collapse
|
6
|
A simple method for cell disruption by immobilization of lysozyme on the extrudate-shaped Na-Y zeolite: Recirculating packed bed disruption process. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
He Y, Wu T, Wang X, Chen B, Chen F. Cost-effective biodiesel production from wet microalgal biomass by a novel two-step enzymatic process. BIORESOURCE TECHNOLOGY 2018; 268:583-591. [PMID: 30138870 DOI: 10.1016/j.biortech.2018.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 05/13/2023]
Abstract
In this study, a novel two-step enzymatic process was firstly established to produce microalgae biodiesel using wet Chlorella biomass. In the first hydrolysis step, to reduce energy consumption and effectively disrupt microalgal cell wall, among cellulase, hemicellulase, papain, lysozyme and pectinase, the highest hydrolysis efficiency (67.52%) was obtained by cellulase at pH 5.0 with enzyme dosage of 200 U/g dry biomass at 40 °C for 12 h. In the second transesterification step, compared with liquid CAL-A/B from Candida antarctica and PLA from Aspergillus oryzae, liquid lipase TL from Thermomyces lanuginosus achieved the highest biodiesel conversion at 81.15:1 (v/w) ethanol/g TFAs ratio in 78-83% water content with 100 PLU/g TFAs lipase loading at 25 °C for 48 h. Moreover, similar results were obtained with three Chlorella species by this process. Overall, this two-step enzymatic process was a green, low-energy and efficient method for cost-effective biodiesel production using wet microalgal biomass.
Collapse
Affiliation(s)
- Yongjin He
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaofei Wang
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Efficient Physisorption of Candida Antarctica Lipase B on Polypropylene Beads and Application for Polyester Synthesis. Catalysts 2018. [DOI: 10.3390/catal8090369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the present work, Candida antarctica lipase B (CaLB) was adsorbed onto polypropylene beads using different reaction conditions, in order to investigate their influence on the immobilization process and the enzyme activity of the preparations in polymerization reactions. In general, lower salt concentrations were more favorable for the binding of enzyme to the carrier. Polymerisation of dimethyl adipate (DMA) and 1,4-butanediol (BDO) was investigated in thin-film systems at 70 °C and at both atmosphere pressure (1000 mbar) and 70 mbar. Conversion rates and molecular masses of the reaction products were compared with reactions catalyzed by CaLB in its commercially available form, known as Novozym 435 (CaLB immobilized on macroporous acrylic resin). The best results according to molecular weight and monomer conversion after 24 h reaction time were obtained with CaLB immobilized in 0.1 M Na2HPO4\NaH2PO4 buffer at pH 8, producing polyesters with 4 kDa at conversion rates of 96% under low pressure conditions. The stability of this preparation was studied in a simulated continuous polymerization process at 70 °C, 70 mbar for 4 h reaction time. The data of this continuous polymerizations show that the preparation produces lower molecular weights at lower conversion rates, but is comparable to the commercial enzyme concerning stability for 10 cycles. However, after 24 h reaction time, using our optimum preparation, higher molecular weight polyesters (4 kDa versus 3.1 kDa) were obtained when compared to Novozym 435.
Collapse
|
9
|
Investigation of the cell disruption methods for maximizing the extraction of arginase from mutant Bacillus licheniformis (M09) using statistical approach. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0107-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Wang J, Zhang W, Gu C, Zhang W, Zhou M, Wang Z, Guo C, Sun L. Step-Up Synthesis of Periodic Mesoporous Organosilicas with a Tyrosine Framework and Performance in Horseradish Peroxidase Immobilization. Chem Asian J 2017; 12:3162-3171. [DOI: 10.1002/asia.201701285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/29/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jianqiang Wang
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Wenqi Zhang
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Changqing Gu
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Wenpei Zhang
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Man Zhou
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Zhiwei Wang
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Cheng Guo
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Linbing Sun
- College of Chemical engineering; State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; Nanjing 210009 China
| |
Collapse
|
11
|
Abstract
Escherichia coli, Saccharomyces cerevisiae, and Pichia pastoris are the standard platforms for biopharmaceutical production with 40% of all between 2010 to 2014 approved protein drugs produced in those microbial hosts. Typically, products overexpressed E. coli and S. cerevisiae remain in the cytosol or are secreted into the periplasm. Consequently, efficient cell disruption is essential for high product recovery during microbial production. Process development platforms at microscale are essential to shorten time to market. While high-pressure homogenization is the industry standard for cell disruption at large scale this method is not practicable for experiments in microscale. This review describes microscale methods for cell disruption at scales as low as 200 µL. Strategies for automation, parallelization and miniaturization, as well as comparability of the results at this scale to high pressure homogenization are considered as those criteria decide which methods are most suited for scale down. Those aspects are discussed in detail for protein overexpression in E. coli and yeast but also the relevance for alternative products and host such as microalgae are taken into account. The authors conclude that bead milling is the best comparable microscale method to large scale high-pressure homogenization and therefore the most suitable technique for automated process development of microbial hosts with the exception of pDNA production.
Collapse
Affiliation(s)
- Cornelia Walther
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Boehringer-Ingelheim Regional Center Vienna, Vienna, Austria
| | - Astrid Dürauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
12
|
Canbolat MF, Savas HB, Gultekin F. Improved catalytic activity by catalase immobilization using γ-cyclodextrin and electrospun PCL nanofibers. J Appl Polym Sci 2016. [DOI: 10.1002/app.44404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- M. Fatih Canbolat
- Textile Engineering Department, Engineering Faculty; Suleyman Demirel University; Isparta
| | - Hasan Basri Savas
- Department of Biochemistry, Faculty of Medicine; Suleyman Demirel University; Isparta
| | - Fatih Gultekin
- Department of Biochemistry, Faculty of Medicine; Suleyman Demirel University; Isparta
- Faculty of Medicine; Alanya Alaaddin Keykubat University; Antalya
| |
Collapse
|
13
|
Sirisha VL, Jain A, Jain A. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 79:179-211. [PMID: 27770861 DOI: 10.1016/bs.afnr.2016.07.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immobilized enzymes can be used in a wide range of processes. In recent years, a variety of new approaches have emerged for the immobilization of enzymes that have greater efficiency and wider usage. During the course of the last two decades, this area has rapidly expanded into a multidisciplinary field. This current study is a comprehensive review of a variety of literature produced on the different enzymes that have been immobilized on various supporting materials. These immobilized enzymes have a wide range of applications. These include applications in the sugar, fish, and wine industries, where they are used for removing organic compounds from waste water. This study also reviews their use in sophisticated biosensors for metabolite control and in situ measurements of environmental pollutants. Immobilized enzymes also find significant application in drug metabolism, biodiesel and antibiotic production, bioremediation, and the food industry. The widespread usage of immobilized enzymes is largely due to the fact that they are cheaper, environment friendly, and much easier to use when compared to equivalent technologies.
Collapse
Affiliation(s)
- V L Sirisha
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India.
| | - Ankita Jain
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India; University of Rajasthan, Jaipur, India
| | - Amita Jain
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India; D.Y. Patil University, Navi Mumbai, India
| |
Collapse
|
14
|
Misson M, Dai S, Jin B, Chen BH, Zhang H. Manipulation of nanofiber-based β-galactosidase nanoenvironment for enhancement of galacto-oligosaccharide production. J Biotechnol 2016; 222:56-64. [PMID: 26876609 DOI: 10.1016/j.jbiotec.2016.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/23/2022]
Abstract
The nanoenvironment of nanobiocatalysts, such as local hydrophobicity, pH and charge density, plays a significant role in optimizing the enzymatic selectivity and specificity. In this study, Kluyveromyces lactis β-galactosidase (Gal) was assembled onto polystyrene nanofibers (PSNFs) to form PSNF-Gal nanobiocatalysts. We proposed that local hydrophobicity on the nanofiber surface could expel water molecules so that the transgalactosylation would be preferable over hydrolysis during the bioconversion of lactose, thus improve the galacto-oligosaccharides (GOS) yield. PSNFs were fabricated by electro-spinning and the operational parameters were optimized to obtain the nanofibers with uniform size and ordered alignment. The resulting nanofibers were functionalized for enzyme immobilization through a chemical oxidation method. The functionalized PSNF improved the enzyme adsorption capacity up to 3100 mg/g nanofiber as well as enhanced the enzyme stability with 80% of its original activity. Importantly, the functionalized PSNF-Gal significantly improved the GOS yield and the production rate was up to 110 g/l/h in comparison with 37 g/l/h by free β-galactosidase. Our research findings demonstrate that the localized nanoenvironment of the PSNF-Gal nanobiocatalysts favour transgalactosylation over hydrolysis in lactose bioconversion.
Collapse
Affiliation(s)
- Mailin Misson
- School of Chemical Engineering, University of Adelaide, Adelaide SA 5000, Australia; Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Sheng Dai
- School of Chemical Engineering, University of Adelaide, Adelaide SA 5000, Australia
| | - Bo Jin
- School of Chemical Engineering, University of Adelaide, Adelaide SA 5000, Australia
| | - Bing H Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hu Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide SA 5000, Australia.
| |
Collapse
|
15
|
Kiristi M, Singh VV, Esteban-Fernández de Ávila B, Uygun M, Soto F, Aktaş Uygun D, Wang J. Lysozyme-Based Antibacterial Nanomotors. ACS NANO 2015; 9:9252-9. [PMID: 26308491 DOI: 10.1021/acsnano.5b04142] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
An effective and rapid bacterial killing nanotechnology strategy based on lysozyme-modified fuel-free nanomotors is demonstrated. The efficient antibacterial property of lysozyme, associated with the cleavage of glycosidic bonds of peptidoglycans present in the bacteria cell wall, has been combined with ultrasound (US)-propelled porous gold nanowire (p-AuNW) motors as biocompatible dynamic bacteria nanofighters. Coupling the antibacterial activity of the enzyme with the rapid movement of these p-AuNWs, along with the corresponding fluid dynamics, promotes enzyme-bacteria interactions and prevents surface aggregation of dead bacteria, resulting in a greatly enhanced bacteria-killing capability. The large active surface area of these nanoporous motors offers a significantly higher enzyme loading capacity compared to nonporous AuNWs, which results in a higher antimicrobial activity against Gram-positive and Gram-negative bacteria. Detailed characterization studies and control experiments provide useful insights into the underlying factors controlling the antibacterial performance of the new dynamic bacteria nanofighters. Rapid and effective killing of the Gram-positive Micrococcus lysodeikticus bacteria (69-84% within 1-5 min) is demonstrated.
Collapse
Affiliation(s)
- Melek Kiristi
- Department of Nanoengineering, University of California-San Diego , La Jolla, California 92093, United States
| | - Virendra V Singh
- Department of Nanoengineering, University of California-San Diego , La Jolla, California 92093, United States
| | | | - Murat Uygun
- Department of Nanoengineering, University of California-San Diego , La Jolla, California 92093, United States
| | - Fernando Soto
- Department of Nanoengineering, University of California-San Diego , La Jolla, California 92093, United States
| | - Deniz Aktaş Uygun
- Department of Nanoengineering, University of California-San Diego , La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California-San Diego , La Jolla, California 92093, United States
| |
Collapse
|
16
|
Liburdi K, Benucci I, Esti M. Lysozyme in Wine: An Overview of Current and Future Applications. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12102] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- K. Liburdi
- Dept. for Innovation in Biological; Agro-food Food and Forest systems Systems (DIBAF); Univ. of Tuscia; via S. Camillo de Lellis 01100 Viterbo Italy
| | - I. Benucci
- Dept. for Innovation in Biological; Agro-food Food and Forest systems Systems (DIBAF); Univ. of Tuscia; via S. Camillo de Lellis 01100 Viterbo Italy
| | - M. Esti
- Dept. for Innovation in Biological; Agro-food Food and Forest systems Systems (DIBAF); Univ. of Tuscia; via S. Camillo de Lellis 01100 Viterbo Italy
| |
Collapse
|
17
|
Treatment of immobilized α-amylase under supercritical CO2 conditions: Can activity be enhanced after consecutive enzymatic reactions? ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Datta S, Christena LR, Rajaram YRS. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013; 3:1-9. [PMID: 28324347 PMCID: PMC3563746 DOI: 10.1007/s13205-012-0071-7] [Citation(s) in RCA: 564] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/20/2012] [Indexed: 02/07/2023] Open
Abstract
The current demands of the world’s biotechnological industries are enhancement in enzyme productivity and development of novel techniques for increasing their shelf life. These requirements are inevitable to facilitate large-scale and economic formulation. Enzyme immobilization provides an excellent base for increasing availability of enzyme to the substrate with greater turnover over a considerable period of time. Several natural and synthetic supports have been assessed for their efficiency for enzyme immobilization. Nowadays, immobilized enzymes are preferred over their free counterpart due to their prolonged availability that curtails redundant downstream and purification processes. Future investigations should endeavor at adopting logistic and sensible entrapment techniques along with innovatively modified supports to improve the state of enzyme immobilization and provide new perspectives to the industrial sector.
Collapse
Affiliation(s)
- Sumitra Datta
- School of Chemical and Biotechnology, Shanmuga Arts, Science, Technology and Research Academy (SASTRA) University, Tirumalaisamudram, Thanjavur, 613401, Tamilnadu, India.
| | - L Rene Christena
- School of Chemical and Biotechnology, Shanmuga Arts, Science, Technology and Research Academy (SASTRA) University, Tirumalaisamudram, Thanjavur, 613401, Tamilnadu, India
| | - Yamuna Rani Sriramulu Rajaram
- School of Chemical and Biotechnology, Shanmuga Arts, Science, Technology and Research Academy (SASTRA) University, Tirumalaisamudram, Thanjavur, 613401, Tamilnadu, India
| |
Collapse
|
19
|
Effect of Different Variables on the Efficiency of the Baker's Yeast Cell Disruption Process to Obtain Alcohol Dehydrogenase Activity. Appl Biochem Biotechnol 2013; 169:1039-55. [DOI: 10.1007/s12010-012-0056-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/26/2012] [Indexed: 11/26/2022]
|
20
|
Lysozyme Immobilized on Micro-Sized Magnetic Particles: Kinetic Parameters at Wine pH. Appl Biochem Biotechnol 2012; 166:1736-46. [DOI: 10.1007/s12010-012-9577-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
|
21
|
Lu S, An Z, Li J, He J. pH-Triggered Adsorption–Desorption of Enzyme in Mesoporous Host to Act on Macrosubstrate. J Phys Chem B 2011; 115:13695-700. [DOI: 10.1021/jp206497u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shan Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhe An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jinyan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
22
|
Dutta P, Ray N, Roy S, Dasgupta AK, Bouloussa O, Sarkar A. Covalent immobilization of active lysozyme on Si/glass surface using alkoxy Fischer carbene complex on SAM. Org Biomol Chem 2011; 9:5123-8. [DOI: 10.1039/c0ob00798f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Ramanan RN, Ling TC, Ariff AB. The performance of a glass bead shaking technique for the disruption of Escherichia coli cells. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0047-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|