1
|
Sushmitha TJ, Rajeev M, Murthy PS, Rao TS, Pandian SK. Planktonic and early-stage biofilm microbiota respond contrastingly to thermal discharge-created seawater warming. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115433. [PMID: 37696079 DOI: 10.1016/j.ecoenv.2023.115433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/21/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Thermal-discharges from power plants highly disturb the biological communities of the receiving water body and understanding their influence is critical, given the relevance to global warming. We employed 16 S rRNA gene sequencing to examine the response of two dominant marine bacterial lifestyles (planktonic and biofilm) against elevated seawater temperature (+5 ℃). Obtained results demonstrated that warming prompted high heterogeneity in diversity and composition of planktonic and biofilm microbiota, albeit both communities responded contrastingly. Alpha diversity revealed that temperature exhibited positive effect on biofilm microbiota and negative effect on planktonic microbiota. The community composition of planktonic microbiota shifted significantly in warming area, with decreased abundances of Bacteroidetes, Cyanobacteria, and Actinobacteria. Contrastingly, these bacterial groups exhibited opposite trend in biofilm microbiota. Co-occurrence networks of biofilm microbiota displayed higher node diversity and co-presence in warming area. The study concludes that with increasing ocean warming, marine biofilms and biofouling management strategies will be more challenging.
Collapse
Affiliation(s)
- T J Sushmitha
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Meora Rajeev
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - P Sriyutha Murthy
- Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - Toleti Subba Rao
- School of Arts & Sciences, Sai University, OMR, Paiyanur, 603105 Tamil Nadu, India
| | | |
Collapse
|
2
|
Qian J, Zhang Y, Wang P, Lu B, He Y, Tang S, Yi Z. Light alters microbiota and electron transport: Evidence for enhanced mesophilic digestion of municipal sludge. WATER RESEARCH 2022; 217:118447. [PMID: 35429889 DOI: 10.1016/j.watres.2022.118447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Light as an environmental factor can affect the process of anaerobic digestion, but there is no systematic study in municipal wastewater sludge mesophilic digestion. In this study, the effects of light on the performance of the anaerobic digestion system and photo-anaerobic microbiota (PAM) were evaluated in lighted anaerobic batch digesters (LABRs). The methane yield from the reactor under the dark condition (LABR0) was 179.2 mL CH4/g COD, which was lower than 305.4 mL CH4/g COD and 223.0 mL CH4/g COD (n = 3, p < 0.05) from reactors under the light intensity of 3600 lm (LABR1) and 7200 lm (LABR2), respectively. The dominant genera in the bacterial and archaeal communities were Bacillus and Methanosarcina under light conditions, Enterococcus and Methanobacterium under dark conditions. And these two bacteria acted as electroactive bacterial genera, indicating that light changes the combination of direct interspecies electron transfer (DIET) microbial partners and activates the DIET pathway for methane production. The electron conduction pathways analysis further suggests that biological DIET (bDIET) between microbial biomass, rather than DIET via conductive material (cDIET) between microbes and conductive materials, is promoted and behaves as the dominant factor enhancing methane production under light conditions. The morphology of microorganisms and the amount and properties of EPS corroborate these views. Our findings are guided to anaerobic digester constructions under the outdoor environment with light exposure.
Collapse
Affiliation(s)
- Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, P. R. China; College of Environment, Hohai University, Nanjing 210098, P. R. China.
| | - Yuhang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, P. R. China; College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, P. R. China; College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, P. R. China; College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, P. R. China; College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, P. R. China; College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Ziyang Yi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, P. R. China; College of Environment, Hohai University, Nanjing 210098, P. R. China
| |
Collapse
|
3
|
Zhang N, Stanislaus MS, Hu X, Zhao C, Zhu Q, Li D, Yang Y. Strategy of mitigating ammonium-rich waste inhibition on anaerobic digestion by using illuminated bio-zeolite fixed-bed process. BIORESOURCE TECHNOLOGY 2016; 222:59-65. [PMID: 27700989 DOI: 10.1016/j.biortech.2016.09.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Intermittent illumination combined with bio-zeolite fixed-bed process was utilized to improve the efficiency of anaerobic digestion with ammonium-rich substrate. The batch experiments were carried out at NH4+-N concentration of 2211mg/L under intermittent illumination and dark (as control) conditions, respectively. The illuminated bioreactor achieved higher methane production (287mL/g-DOC) and ATP value (0.38μmol/L) than that under dark condition. Then the bio-zeolite fixed-bed bioreactor (NH4+-N concentration: 3000mg/L) was used to study the additional efficiency on the illuminated ammonium-rich anaerobic digestion process. The result showed that the illuminated fixed-bed bioreactor presented the greatest methane concentration (70%), methane yield (283mL/g-DOC) and quantity of methanogens comparing with no-bed bioreactor. Furthermore, the illuminated fixed-bed bioreactor achieved better performance during 118-day semi-continuous fermentation. The combination of the intermittent illumination and bio-zeolite fixed-bed strategy contributed to the higher efficiency and stability of the ammonium-rich anaerobic digestion process.
Collapse
Affiliation(s)
- Nan Zhang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Mishma Silvia Stanislaus
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiaohong Hu
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chenyu Zhao
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qi Zhu
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Dawei Li
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
4
|
Yang Y, Tsukahara K, Yang R, Zhang Z, Sawayama S. Enhancement on biodegradation and anaerobic digestion efficiency of activated sludge using a dual irradiation process. BIORESOURCE TECHNOLOGY 2011; 102:10767-10771. [PMID: 21945660 DOI: 10.1016/j.biortech.2011.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 09/03/2011] [Accepted: 09/05/2011] [Indexed: 05/31/2023]
Abstract
A dual irradiation process involving aerobic thermophilic irradiation pretreatment (ATIP) and intermittent irradiation anaerobic digestion was developed to improve the digestion of waste-activated sludge. First, the effect of ATIP on further anaerobic digestion of activated sludge in batch mode was investigated. When exposed to ATIP for 24 h, the digestion reactor gave the highest methane yield, removed the most dissolved organic carbon (DOC) and showed the most effective reduction of VS compared to other irradiation times. This process was further enhanced by using an anaerobic fluidised-bed reactor packed with carbon felt in semi-continuous mode for digesting the pretreated activated sludge under intermittent irradiation conditions. Dual irradiation for 24 h followed by 60 min of anaerobic irradiation processing per day turned out to be optimal. This resulted in 65.3% of VS reduction, 83.9% of DOC removal ratio and 538 ml/g-VS of methane yield.
Collapse
Affiliation(s)
- Yingnan Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, Tsukuba 305-8572, Japan.
| | | | | | | | | |
Collapse
|