1
|
Bhalla TC, Thakur N, Kumar V. Arylacetonitrilases: Potential Biocatalysts for Green Chemistry. Appl Biochem Biotechnol 2024; 196:1769-1785. [PMID: 37453025 DOI: 10.1007/s12010-023-04643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Nitrilases are the enzymes that catalyze the hydrolysis of nitriles to corresponding carboxylic acid and ammonia. They are broadly categorized into aromatic, aliphatic, and arylacetonitrilases based on their substrate specificity. Most of the studies pertaining to these enzymes in the literature have focused on aromatic and aliphatic nitrilases. However, arylacetonitrilases have attracted the attention of academia and industry in the last several years due to their aryl specificity and enantioselectivity. They have emerged as interesting biocatalytic tools in green chemistry to synthesize useful aryl acids such as mandelic acid and derivatives of phenylacetic acid. The aim of the present review is to collate information on the arylacetonitrilases and their catalytic properties including enantioselectivity and potential applications in organic synthesis.
Collapse
Affiliation(s)
- Tek Chand Bhalla
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Gyan-Path, Shimla, 171005, India.
| | - Neerja Thakur
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Gyan-Path, Shimla, 171005, India
- Department of Biotechnology and Microbiology, Himachal Pradesh, Rajkiya Kanya Mahavidyalaya, Longwood, Shimla, 171001, India
| | - Vijay Kumar
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Gyan-Path, Shimla, 171005, India
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Singh RV, Sambyal K. Green synthesis aspects of (R)-(-)-mandelic acid; a potent pharmaceutically active agent and its future prospects. Crit Rev Biotechnol 2023; 43:1226-1235. [PMID: 36154348 DOI: 10.1080/07388551.2022.2109004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
(R)-(-)-mandelic acid is an important carboxylic acid known for its numerous potential applications in the pharmaceutical industry as it is an ideal starting material for the synthesis of antibiotics, antiobesity drugs and antitumor agents. In past few decades, the synthesis of (R)-(-)-mandelic acid has been undertaken mainly through the chemical route. However, chemical synthesis of optically pure (R)-(-)-mandelic acid is difficult to achieve at an industrial scale. Therefore, its microbe mediated production has gained considerable attention as it exhibits many merits over the chemical approaches. The present review focuses on various biotechnological strategies for the production of (R)-(-)-mandelic acid through microbial biotransformation and enzymatic catalysis; in particular, an analysis and comparison of the synthetic methods and different enzymes. The wild type as well as recombinant microbial strains for the production of (R)-(-)-mandelic acid have been elucidated. In addition, different microbial strategies used for maximum bioconversion of mandelonitrile into (R)-(-)-mandelic acid are discussed in detail with regard to higher substrate tolerance and maximum bioconversion.HighlightsMandelonitrile, mandelamide and o-chloromandelonitrile can be used as substrates to produce (R)-(-)-mandelic acid by enzymes.Three enzymes (nitrilase, nitrile hydratase and amidase) are systematically introduced for production of (R)-(-)-mandelic acid.Microbial transformation is able to produce optically pure (R)-(-)-mandelic acid with 100% productive yield.
Collapse
Affiliation(s)
| | - Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| |
Collapse
|
3
|
Toprak A, Tükel SS, Yildirim D. Stabilization of multimeric nitrilase via different immobilization techniques for hydrolysis of acrylonitrile to acrylic acid. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2020.1869217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ali Toprak
- Vocational School of Acigol, University of Nevsehir Haci Bektas Veli, Nevsehir, Turkey
- Department of Chemistry, Faculty of Science and Letters, University of Cukurova, Adana, Turkey
| | - S. Seyhan Tükel
- Department of Chemistry, Faculty of Science and Letters, University of Cukurova, Adana, Turkey
| | - Deniz Yildirim
- Department of Chemical Engineering, Faculty of Ceyhan Engineering, University of Cukurova, Adana, Turkey
| |
Collapse
|
4
|
Shen JD, Cai X, Liu ZQ, Zheng YG. Nitrilase: a promising biocatalyst in industrial applications for green chemistry. Crit Rev Biotechnol 2020; 41:72-93. [PMID: 33045860 DOI: 10.1080/07388551.2020.1827367] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitrilases are widely distributed in nature and are able to hydrolyze nitriles into their corresponding carboxylic acids and ammonia. In industry, nitrilases have been used as green biocatalysts for the production of high value-added products. To date, biocatalysts are considered to be important alternatives to chemical catalysts due to increasing environmental problems and resource scarcity. This review provides an overview of recent advances of nitrilases in aspects of distribution, enzyme screening, molecular structure and catalytic mechanism, protein engineering, and their potential applications in industry.
Collapse
Affiliation(s)
- Ji-Dong Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| |
Collapse
|
5
|
Xiao X, Li Z, Liu Y, Jia L. Preparation of chitosan‐based molecularly imprinted material for enantioseparation of racemic mandelic acid in aqueous medium by solid phase extraction. J Sep Sci 2019; 42:3544-3552. [DOI: 10.1002/jssc.201900825] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Xudong Xiao
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life ScienceCollege of Biophotonics, South China Normal University Guangzhou P. R. China
| | - Zhenqun Li
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life ScienceCollege of Biophotonics, South China Normal University Guangzhou P. R. China
| | - Ya Liu
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life ScienceCollege of Biophotonics, South China Normal University Guangzhou P. R. China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life ScienceCollege of Biophotonics, South China Normal University Guangzhou P. R. China
| |
Collapse
|
6
|
Lv SZ, Guo YX, Xue YP, Xu JM, Zheng YG. Efficient separation of l-phosphinothricin from enzymatic reaction solution using cation-exchange resin. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1574824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sheng-Zhi Lv
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Xing Guo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Jian-Miao Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
7
|
Hülsewede D, Meyer L, von Langermann J. Application of In Situ Product Crystallization and Related Techniques in Biocatalytic Processes. Chemistry 2019; 25:4871-4884. [DOI: 10.1002/chem.201804970] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/04/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Dennis Hülsewede
- Biocatalytic Synthesis Group, Institute of ChemistryUniversity of Rostock A-Einstein-Str. 3A 18059 Rostock Germany
| | - Lars‐Erik Meyer
- Biocatalytic Synthesis Group, Institute of ChemistryUniversity of Rostock A-Einstein-Str. 3A 18059 Rostock Germany
| | - Jan von Langermann
- Biocatalytic Synthesis Group, Institute of ChemistryUniversity of Rostock A-Einstein-Str. 3A 18059 Rostock Germany
| |
Collapse
|
8
|
Xu Z, Xiong N, Zou SP, Liu YX, liu ZQ, Xue YP, Zheng YG. Highly efficient conversion of 1-cyanocycloalkaneacetonitrile using a “super nitrilase mutant”. Bioprocess Biosyst Eng 2018; 42:455-463. [DOI: 10.1007/s00449-018-2049-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
|
9
|
Production of (R)-(−)-mandelic acid with nitrilase immobilized on D155 resin modified by l -lysine. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Odinot E, Fine F, Sigoillot JC, Navarro D, Laguna O, Bisotto A, Peyronnet C, Ginies C, Lecomte J, Faulds CB, Lomascolo A. A Two-Step Bioconversion Process for Canolol Production from Rapeseed Meal Combining an Aspergillus niger Feruloyl Esterase and the Fungus Neolentinus lepideus. Microorganisms 2017; 5:microorganisms5040067. [PMID: 29036919 PMCID: PMC5748576 DOI: 10.3390/microorganisms5040067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 11/24/2022] Open
Abstract
Rapeseed meal is a cheap and abundant raw material, particularly rich in phenolic compounds of biotechnological interest. In this study, we developed a two-step bioconversion process of naturally occurring sinapic acid (4-hydroxy-3,5-dimethoxycinnamic acid) from rapeseed meal into canolol by combining the complementary potentialities of two filamentous fungi, the micromycete Aspergillus niger and the basidiomycete Neolentinus lepideus. Canolol could display numerous industrial applications because of its high antioxidant, antimutagenic and anticarcinogenic properties. In the first step of the process, the use of the enzyme feruloyl esterase type-A (named AnFaeA) produced with the recombinant strain A. niger BRFM451 made it possible to release free sinapic acid from the raw meal by hydrolysing the conjugated forms of sinapic acid in the meal (mainly sinapine and glucopyranosyl sinapate). An amount of 39 nkat AnFaeA per gram of raw meal, at 55 °C and pH 5, led to the recovery of 6.6 to 7.4 mg of free sinapic acid per gram raw meal, which corresponded to a global hydrolysis yield of 68 to 76% and a 100% hydrolysis of sinapine. Then, the XAD2 adsorbent (a styrene and divinylbenzene copolymer resin), used at pH 4, enabled the efficient recovery of the released sinapic acid, and its concentration after elution with ethanol. In the second step, 3-day-old submerged cultures of the strain N. lepideus BRFM15 were supplied with the recovered sinapic acid as the substrate of bioconversion into canolol by a non-oxidative decarboxylation pathway. Canolol production reached 1.3 g/L with a molar yield of bioconversion of 80% and a productivity of 100 mg/L day. The same XAD2 resin, when used at pH 7, allowed the recovery and purification of canolol from the culture broth of N. lepideus. The two-step process used mild conditions compatible with green chemistry.
Collapse
Affiliation(s)
- Elise Odinot
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Frédéric Fine
- Terres Inovia, Parc Industriel, 11 Rue Monge, 33600 Pessac, France.
| | - Jean-Claude Sigoillot
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - David Navarro
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
- Centre International de Ressources Microbiennes, Champignons Filamenteux, CIRM-CF, Case 925, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Oscar Laguna
- CIRAD Centre de coopération Internationale en Recherche Agronomique pour le Développement, UMR IATE Montpellier SupAgro-INRA, 2, Place Pierre Viala, 34060 Montpellier, France.
| | - Alexandra Bisotto
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Corinne Peyronnet
- Terres Univia, 11 rue Monceau, CS60003, 75378 Paris CEDEX 8, France.
| | - Christian Ginies
- Sécurité et Qualité des Produits d'Origine Végétale, INRA Institut National de la Recherche Agronomique UMR408 SQPOV, Université d'Avignon, 33 rue Louis Pasteur, 84029 Avignon, France.
| | - Jérôme Lecomte
- CIRAD Centre de coopération Internationale en Recherche Agronomique pour le Développement, UMR IATE Montpellier SupAgro-INRA, 2, Place Pierre Viala, 34060 Montpellier, France.
| | - Craig B Faulds
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Anne Lomascolo
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| |
Collapse
|
11
|
Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor. Appl Microbiol Biotechnol 2016; 101:1857-1868. [DOI: 10.1007/s00253-016-7954-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 11/27/2022]
|
12
|
High-density culture of Lactobacillus plantarum coupled with a lactic acid removal system with anion-exchange resins. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
High-throughput screening methods for nitrilases. Appl Microbiol Biotechnol 2016; 100:3421-32. [DOI: 10.1007/s00253-016-7381-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
14
|
Zhang ZJ, Yu HL, Imanaka T, Xu JH. Efficient production of (R)-(−)-mandelic acid by isopropanol-permeabilized recombinant E. coli cells expressing Alcaligenes sp. nitrilase. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Van Hecke W, Kaur G, De Wever H. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade. Biotechnol Adv 2014; 32:1245-1255. [DOI: 10.1016/j.biotechadv.2014.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 12/27/2022]
|
16
|
Wang P, He JY, Yin JF. Enhanced biocatalytic production of L-cysteine by Pseudomonas sp. B-3 with in situ product removal using ion-exchange resin. Bioprocess Biosyst Eng 2014; 38:421-8. [PMID: 25199811 DOI: 10.1007/s00449-014-1281-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/02/2014] [Indexed: 11/28/2022]
Abstract
Bioconversion of DL-2-amino-Δ(2)-thiazoline-4-carboxylic acid (DL-ATC) catalyzed by whole cells of Pseudomonas sp. was successfully applied for the production of L-cysteine. It was found, however, like most whole-cell biocatalytic processes, the accumulated L-cysteine produced obvious inhibition to the activity of biocatalyst and reduced the yield. To improve L-cysteine productivity, an anion exchange-based in situ product removal (ISPR) approach was developed. Several anion-exchange resins were tested to select a suitable adsorbent used in the bioconversion of DL-ATC for the in situ removal of L-cysteine. The strong basic anion-exchange resin 201 × 7 exhibited the highest adsorption capacity for L-cysteine and low adsorption for DL-ATC, which is a favorable option. With in situ addition of 60 g L(-1) resin 201 × 7, the product inhibition can be reduced significantly and 200 mmol L(-1) of DL-ATC was converted to L-cysteine with 90.4 % of yield and 28.6 mmol L(-1 )h(-1) of volumetric productivity. Compared to the bioconversion without the addition of resin, the volumetric productivity of L-cysteine was improved by 2.27-fold using ISPR method.
Collapse
Affiliation(s)
- Pu Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, 310032, People's Republic of China,
| | | | | |
Collapse
|
17
|
Li MY, Wang XD. The influence of hydroxypropyl-β-cyclodextrin on the enantioselective hydrolysis of 2-amino phenylpropionitrile catalyzed by recombinant nitrilase. BIORESOUR BIOPROCESS 2014. [DOI: 10.1186/s40643-014-0004-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Liu ZQ, Zhang XH, Xue YP, Xu M, Zheng YG. Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereospecific biosynthesis of (R)-(-)-mandelic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4685-4694. [PMID: 24766313 DOI: 10.1021/jf405683f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nitrilases have recently received considerable attention as the biocatalysts for stereospecific production of carboxylic acids. To improve the activity, the nitrilase from Alcaligenes faecalis was selected for further modification by the gene site saturation mutagenesis method (GSSM), based on homology modeling and previous reports about mutations. After mutagenesis, the positive mutants were selected using a convenient two-step high-throughput screening method based on product formation and pH indicator combined with the HPLC method. After three rounds of GSSM, Mut3 (Gln196Ser/Ala284Ile) with the highest activity and ability of tolerance to the substrate was selected. As compared to the wild-type A. faecalis nitrilase, Mut3 showed 154% higher specific activity. Mut3 could retain 91.6% of its residual activity after incubation at pH 6.5 for 6 h. In a fed-batch reaction with 800 mM mandelonitrile as the substrate, the cumulative production of (R)-(-)-mandelic acid after 7.5 h of conversion reached 693 mM with an enantiomeric excess of 99%, and the space-time productivity of Mut3 was 21.50-fold higher than that of wild-type nitrilase. The Km, Vmax, and k(cat) of wild-type and Mut3 for mandelonitrile were 20.64 mM, 33.74 μmol mg(-1) min(-1), 24.45 s(-1), and 9.24 mM, 47.68 μmol mg(-1) min(-1), and 34.55 s(-1), respectively. A homology modeling and molecular docking study showed that the diameter of the catalytic tunnel of Mut3 became longer and that the tunnel volume was smaller. These structural changes are proposed to improve the hydrolytic activity and pH stability of Mut3. Mut3 has the potential for industrial applications in the upscale production of (R)-(-)-mandelic acid.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Institute of Bioengineering, Zhejiang University of Technology , Hangzhou, Zhejiang 310014, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Efficient production of (R)-(−)-mandelic acid using glutaraldehyde cross-linked Escherichia coli cells expressing Alcaligenes sp. nitrilase. Bioprocess Biosyst Eng 2013; 37:1241-8. [DOI: 10.1007/s00449-013-1096-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/13/2013] [Indexed: 10/25/2022]
|
20
|
Dafoe JT, Daugulis AJ. In situ product removal in fermentation systems: improved process performance and rational extractant selection. Biotechnol Lett 2013; 36:443-60. [DOI: 10.1007/s10529-013-1380-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/30/2013] [Indexed: 01/18/2023]
|
21
|
Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC. Optimization of arylacetonitrilase production from Alcaligenes sp. MTCC 10675 and its application in mandelic acid synthesis. Appl Microbiol Biotechnol 2013; 98:83-94. [DOI: 10.1007/s00253-013-5288-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 10/26/2022]
|
22
|
Ni K, Wang H, Zhao L, Zhang M, Zhang S, Ren Y, Wei D. Efficient production of (R)-(−)-mandelic acid in biphasic system by immobilized recombinant E. coli. J Biotechnol 2013; 167:433-40. [DOI: 10.1016/j.jbiotec.2013.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
|
23
|
Biocatalytic synthesis of chiral intermediate of pregabalin with high substrate loading by a newly isolated Morgarella morganii ZJB-09203. Appl Microbiol Biotechnol 2013; 97:4839-47. [DOI: 10.1007/s00253-013-4810-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 11/26/2022]
|
24
|
Zou SP, Du EH, Hu ZC, Zheng YG. Enhanced biotransformation of 1,3-dichloro-2-propanol to epichlorohydrin via resin-based in situ product removal process. Biotechnol Lett 2013; 35:937-42. [PMID: 23430130 DOI: 10.1007/s10529-013-1165-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/07/2013] [Indexed: 11/30/2022]
Abstract
Biotransformation of 1,3-dichloro-2-propanol (DCP) to epichlorohydrin (ECH) by the whole cells of recombinant Escherichia coli expressing halohydrin dehalogenase was limited by product inhibition. To solve this problem and improve the ECH yield, a biotransformation strategy using resin-based in situ product removal (ISPR) was investigated. Seven macroporous resins were examined to adsorb ECH: resin HZD-9 was the best. When 10 % (w/v) HZD-9 was added to batch biotransformation, 53.3 mM ECH was obtained with a molar yield of 88.3 %. The supplement of the HZD-9 increased the ECH volumetric productivity from 0.5 to 2.8 mmol/l min compared to without addition of resin. In fed-batch biotransformation, this approach increased ECH from 31 to 87 mM. These results provide a promising basis for the biosynthesis of ECH.
Collapse
Affiliation(s)
- Shu-Ping Zou
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | | | | | | |
Collapse
|
25
|
Xue YP, Xu M, Chen HS, Liu ZQ, Wang YJ, Zheng YG. A Novel Integrated Bioprocess for Efficient Production of (R)-(−)-Mandelic Acid with Immobilized Alcaligenes faecalis ZJUTB10. Org Process Res Dev 2013. [DOI: 10.1021/op3001993] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ya-Ping Xue
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| | - Ming Xu
- Zhejiang Laiyi Biotechnology Co., Ltd., Shengzhou 312400, Zhejiang, China
| | - Hong-Sheng Chen
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| | - Zhi-Qiang Liu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| | - Ya-Jun Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| |
Collapse
|
26
|
Wang YJ, Liu ZQ, Zheng RC, Xue YP, Zheng YG. Screening, cultivation, and biocatalytic performance of Rhodococcus boritolerans FW815 with strong 2,2-dimethylcyclopropanecarbonitrile hydratase activity. J Ind Microbiol Biotechnol 2011; 39:409-17. [PMID: 21892773 DOI: 10.1007/s10295-011-1029-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/10/2011] [Indexed: 11/26/2022]
Abstract
In this work, a mild, efficient bioconversion of 2,2-dimethylcyclopropanecarbonitrile (DMCPCN) to 2,2-dimethylcyclopropanecarboxamide (DMCPCA) in distilled water system was developed. The isolate FW815 was screened using the enrichment culture technique, displaying strong DMCPCN hydratase activity, and was identified as Rhodococcus boritolerans based on morphological, physiological, biochemical tests and 16S rRNA gene sequencing. Cultivation outcomes indicated that R. boritolerans FW815 was a neutrophile, with a growth optimum of 28-32°C; its DMCPCN hydratase belonged to the Fe-type family, and was most active at 38-42°C, pH 7.0, with maximal activity of 4.51 × 10(4) U g(-1) DCW. R. boritolerans FW815 was found to be DMCPCA amidase-negative, eliminating the contamination of dimethylcyclopropanecarboxylic acid. Moreover, it displayed high activity and acceptable reusability in the non-buffered distilled water system, comparable to those in pH 7.0 phosphate buffer (50.0 mmol l(-1)).
Collapse
Affiliation(s)
- Ya-Jun Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|