1
|
Gennari A, Simon R, Renard G, Chies JM, Volpato G, Volken de Souza CF. Lactose hydrolysis in packed-and fluidized-bed reactors using a recombinant β-galactosidase immobilized on magnetic core-shell capsules. Bioprocess Biosyst Eng 2024; 47:263-273. [PMID: 38156992 DOI: 10.1007/s00449-023-02960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
The objective of this study was to develop a bioprocess for lactose hydrolysis in diverse dairy matrices, specifically skim milk and cheese whey, utilizing column reactors employing a core-shell enzymatic system featuring β-galactosidase fused to a Cellulose Binding Domain (CBD) tag (β-galactosidase-CBD). The effectiveness of reactor configurations, including ball columns and toothed columns operating in packed and fluidized-bed modes, was evaluated for catalyzing lactose hydrolysis in both skim milk and cheese whey. In a closed system, these reactors achieved lactose hydrolysis rates of approximately 50% within 5 h under all evaluated conditions. Considering the scale of the bioprocess, the developed enzymatic system was capable of continuously hydrolyzing 9.6 L of skim milk while maintaining relative hydrolysis levels of approximately 50%. The biocatalyst, created by immobilizing β-galactosidase-CBD on magnetic core-shell capsules, exhibited exceptional operational stability, and the proposed bioprocess employing these column reactors showcases the potential for scalability.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade Do Vale Do Taquari - Univates, Av. Avelino Talini, Lajeado, RS, 171, ZC 95914-014, Brazil
- Programa de Pós-Graduação Em Biotecnologia, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Universidade Do Vale Do Taquari - Univates, Av. Avelino Talini, Lajeado, RS, 171, ZC 95914-014, Brazil
| | - Gaby Renard
- Quatro G Pesquisa & Desenvolvimento Ltda, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia Do Rio Grande Do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade Do Vale Do Taquari - Univates, Av. Avelino Talini, Lajeado, RS, 171, ZC 95914-014, Brazil.
- Programa de Pós-Graduação Em Biotecnologia, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
2
|
Remonatto D, Miotti Jr. RH, Monti R, Bassan JC, de Paula AV. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
3
|
Current State and Perspectives on Transesterification of Triglycerides for Biodiesel Production. Catalysts 2021. [DOI: 10.3390/catal11091121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Triglycerides are the main constituents of lipids, which are the fatty acids of glycerol. Natural organic triglycerides (viz. virgin vegetable oils, recycled cooking oils, and animal fats) are the main sources for biodiesel production. Biodiesel (mono alkyl esters) is the most attractive alternative fuel to diesel, with numerous environmental advantages over petroleum-based fuel. The most practicable method for converting triglycerides to biodiesel with viscosities comparable to diesel fuel is transesterification. Previous research has proven that biodiesel–diesel blends can operate the compression ignition engine without the need for significant modifications. However, the commercialization of biodiesel is still limited due to the high cost of production. In this sense, the transesterification route is a crucial factor in determining the total cost of biodiesel production. Homogenous base-catalyzed transesterification, industrially, is the conventional method to produce biodiesel. However, this method suffers from limitations both environmentally and economically. Although there are review articles on transesterification, most of them focus on a specific type of transesterification process and hence do not provide a comprehensive picture. This paper reviews the latest progress in research on all facets of transesterification technology from reports published by highly-rated scientific journals in the last two decades. The review focuses on the suggested modifications to the conventional method and the most promising innovative technologies. The potentiality of each technology to produce biodiesel from low-quality feedstock is also discussed.
Collapse
|
4
|
Wiederkehr B, Mitchell DA, de Lima Luz LF, Krieger N. Use of the Langmuir-Hinshelwood-Hougen-Watson equation to describe the ethyl esterification of fatty acids catalyzed by a fermented solid with lipase activity. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Production of volatile compounds by yeasts using hydrolysed grape seed oil obtained by immobilized lipases in continuous packed-bed reactors. Bioprocess Biosyst Eng 2020; 43:1391-1402. [DOI: 10.1007/s00449-020-02334-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/12/2020] [Indexed: 01/25/2023]
|
6
|
Ávila SN, Gutarra ML, Fernandez-Lafuente R, Cavalcanti ED, Freire DM. Multipurpose fixed-bed bioreactor to simplify lipase production by solid-state fermentation and application in biocatalysis. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Guerrero C, Valdivia F, Ubilla C, Ramírez N, Gómez M, Aburto C, Vera C, Illanes A. Continuous enzymatic synthesis of lactulose in packed-bed reactor with immobilized Aspergillus oryzae β-galactosidase. BIORESOURCE TECHNOLOGY 2019; 278:296-302. [PMID: 30708333 DOI: 10.1016/j.biortech.2018.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Lactulose synthesis from fructose and lactose in continuous packed-bed reactor operation with glyoxyl-agarose immobilized Aspergillus oryzae β-galactosidase is reported for the first time. Alternative strategies to conventional batch synthesis have been scarcely explored for lactulose synthesis. The effect of flow rate, substrates ratio and biocatalyst-inert packing material mass ratio (MB/MIM) were studied on reactor performance. Increase in any of these variables produced an increase in lactulose yield (YLu) being higher than obtained in batch synthesis at comparable conditions. Maximum YLu of 0.6 g·g-1 was obtained at 50 °C, pH 4.5, 50% w/w total sugars, 15 mL·min-1, fructose/lactose molar ratio of 12 and MB/MIM of 1/8 g·g-1; at such conditions yield of transgalactosylated oligosaccharides (YTOS) was 0.16 g·g-1, selectivity (lactulose/TOS molar ratio) was 5.4 and lactose conversion (XLactose) was 28%. Reactor operation with recycle had no significant effect on yield, producing only some decrease in productivity.
Collapse
Affiliation(s)
- Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| | - Felipe Valdivia
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Claudia Ubilla
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Nicolás Ramírez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Matías Gómez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carla Aburto
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| |
Collapse
|
8
|
de Oliveira RL, Dias JL, da Silva OS, Porto TS. Immobilization of pectinase from Aspergillus aculeatus in alginate beads and clarification of apple and umbu juices in a packed bed reactor. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2018.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Tokuyama H, Naito A, Kato G. Transesterification of triolein with ethanol using lipase-entrapped NIPA- co -PEGMEA gel beads. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Pellis A, Cantone S, Ebert C, Gardossi L. Evolving biocatalysis to meet bioeconomy challenges and opportunities. N Biotechnol 2018; 40:154-169. [DOI: 10.1016/j.nbt.2017.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
|
11
|
Cavallaro V, Ercoli DR, Tonetto GM, Ferreira ML. Simple and economical CALB/polyethylene/aluminum biocatalyst for fatty acid esterification. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Valeria Cavallaro
- PLAPIQUI, Chemistry Department; Universidad Nacional del Sur (UNS), CONICET; Camino La Carrindanga km 7 8000 Bahía Blanca Argentina
| | - Daniel Ricardo Ercoli
- PLAPIQUI, Chemical Engineering Department; Universidad Nacional del Sur (UNS), CONICET; Camino La Carrindanga km 7 8000 Bahía Blanca Argentina
| | - Gabriela Marta Tonetto
- PLAPIQUI, Chemical Engineering Department; Universidad Nacional del Sur (UNS), CONICET; Camino La Carrindanga km 7 8000 Bahía Blanca Argentina
| | - María Luján Ferreira
- PLAPIQUI, Chemical Engineering Department; Universidad Nacional del Sur (UNS), CONICET; Camino La Carrindanga km 7 8000 Bahía Blanca Argentina
| |
Collapse
|
12
|
Wierschem M, Skiborowski M, Górak A, Schmuhl R, Kiss AA. Techno-economic evaluation of an ultrasound-assisted Enzymatic Reactive Distillation process. Comput Chem Eng 2017. [DOI: 10.1016/j.compchemeng.2017.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Maeda K, Kuramochi H, Arafune K, Itoh K, Yamamoto T. Transesterification of Triolein and Methanol by Novozym 435 with Dimethyl Ether. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2017. [DOI: 10.1252/jcej.17we123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kouji Maeda
- Department of Chemical Engineering, University of Hyogo
| | | | - Koji Arafune
- Department of Chemical Engineering, University of Hyogo
| | - Kazuhiro Itoh
- Department of Chemical Engineering, University of Hyogo
| | | |
Collapse
|
14
|
Ramos L, Martin LS, Santos JC, de Castro HF. Combined Use of a Two-Stage Packed Bed Reactor with a Glycerol Extraction Column for Enzymatic Biodiesel Synthesis from Macaw Palm Oil. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b03811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lucas Ramos
- Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12602-810, Brazil
| | - Lucas S. Martin
- Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12602-810, Brazil
| | - Júlio C. Santos
- Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12602-810, Brazil
| | - Heizir F. de Castro
- Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12602-810, Brazil
| |
Collapse
|
15
|
Kuroiwa T, Hamazaki K, Katayama M, Sato S, Matsui T. Improvement of synthetic activity and stability of a commercial lipase in a low-water system via immobilization of hydrated lipase aggregates. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Continuous enzymatic biodiesel production from coconut oil in two-stage packed-bed reactor incorporating an extracting column to remove glycerol formed as by-product. Bioprocess Biosyst Eng 2016; 39:1611-7. [DOI: 10.1007/s00449-016-1636-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/31/2016] [Indexed: 01/22/2023]
|
17
|
Matte CR, Bordinhão C, Poppe JK, Rodrigues RC, Hertz PF, Ayub MA. Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.02.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Norjannah B, Ong HC, Masjuki HH, Juan JC, Chong WT. Enzymatic transesterification for biodiesel production: a comprehensive review. RSC Adv 2016. [DOI: 10.1039/c6ra08062f] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biodiesel catalyzed by enzyme is affected by many factors. This review will critically discuss the three major components of enzymatic production of biodiesel and the methods used to improve the reaction.
Collapse
Affiliation(s)
- B. Norjannah
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Hwai Chyuan Ong
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - H. H. Masjuki
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - J. C. Juan
- Nanotechnology & Catalysis Research Centre (NanoCat)
- Institute of Postgraduate Studies
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - W. T. Chong
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| |
Collapse
|
19
|
Lorenzoni AS, Aydos LF, Klein MP, Ayub MA, Rodrigues RC, Hertz PF. Continuous production of fructooligosaccharides and invert sugar by chitosan immobilized enzymes: Comparison between in fluidized and packed bed reactors. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Su E, Wei D. Production of fatty acid butyl esters using the low cost naturally immobilized Carica papaya lipase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6375-6381. [PMID: 24954104 DOI: 10.1021/jf501993v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, the low cost naturally immobilized Carica papaya lipase (CPL) was investigated for production of fatty acid butyl esters (FABE) to fulfill the aim of reducing the lipase cost in the enzymatic butyl-biodiesel process. The CPL showed specificities to different alcohol acyl acceptors. Alcohols with more than three carbon atoms did not have negative effects on the CPL activity. The CPL catalyzed butanolysis for FABE production was systematically investigated. The reaction solvent, alcohol/oil molar ratio, enzyme amount, reaction temperature, and water activity all affected the butanolysis process. Under the optimized conditions, the highest conversion of 96% could be attained in 24 h. These optimal conditions were further applied to CPL catalyzed butanolysis of other vegetable oils. All of them showed very high conversion. The CPL packed-bed reactor was further developed, and could be operated continuously for more than 150 h. All of these results showed that the low cost Carica papaya lipase can be used as a promising lipase for biodiesel production.
Collapse
Affiliation(s)
- Erzheng Su
- Enzyme and Fermentation Technology Laboratory, College of Light Industry Science and Engineering, Nanjing Forestry University , Nanjing 210037, P. R. China
| | | |
Collapse
|
21
|
|
22
|
Investigation of Lipozyme TL IM-catalyzed transesterification using ultraviolet spectrophotometric assay. CHINESE JOURNAL OF CATALYSIS 2014. [DOI: 10.1016/s1872-2067(14)60053-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
A sensitive colorimetric high-throughput screening method for lipase synthetic activity assay. Anal Biochem 2014; 452:13-5. [PMID: 24525041 DOI: 10.1016/j.ab.2014.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/20/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
A sensitive and practical high-throughput screening method for assaying lipase synthetic activity is described. Lipase-catalyzed transesterification between vinyl acetate and n-butanol in n-hexane was chosen as a model reaction. The released acetaldehyde was determined by the colorimetric method using 3-methyl-2-benzothialinone (MBTH) derivatization. In comparison with other methods, the major advantages of this process include high sensitivity, simple detection, inexpensive reagents, and low requirements for instruments.
Collapse
|
24
|
Biodiesel production from soybean soapstock acid oil by hydrolysis in subcritical water followed by lipase-catalyzed esterification using a fermented solid in a packed-bed reactor. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.09.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Halder S, Sakthivel S, Jayaraj KM, Gupta PD. STUDIES OF TRANSESTERIFICATION OF KARANJA (Pongamia pinnata) OIL IN A PACKED BED REACTOR. CHEM ENG COMMUN 2013. [DOI: 10.1080/00986445.2012.762627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Hama S, Yoshida A, Tamadani N, Noda H, Kondo A. Enzymatic production of biodiesel from waste cooking oil in a packed-bed reactor: an engineering approach to separation of hydrophilic impurities. BIORESOURCE TECHNOLOGY 2013; 135:417-421. [PMID: 22795609 DOI: 10.1016/j.biortech.2012.06.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 06/01/2023]
Abstract
An engineering approach was applied to an efficient biodiesel production from waste cooking oil. In this work, an enzymatic packed-bed reactor (PBR) was integrated with a glycerol-separating system and used successfully for methanolysis, yielding a methyl ester content of 94.3% and glycerol removal of 99.7%. In the glycerol-separating system with enhanced retention time, the effluent contained lesser amounts of glycerol and methanol than those in the unmodified system, suggesting its promising ability to remove hydrophilic impurities from the oil layer. The PBR system was also applied to oils with high acid values, in which fatty acids could be esterified and the large amount of water was extracted using the glycerol-separating system. The long-term operation demonstrated the high lipase stability affording less than 0.2% residual triglyceride in 22 batches. Therefore, the PBR system, which facilitates the separation of hydrophilic impurities, is applicable to the enzymatic biodiesel production from waste cooking oil.
Collapse
Affiliation(s)
- Shinji Hama
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | | | | | | | | |
Collapse
|
27
|
Hama S, Kondo A. Enzymatic biodiesel production: an overview of potential feedstocks and process development. BIORESOURCE TECHNOLOGY 2013; 135:386-395. [PMID: 22985827 DOI: 10.1016/j.biortech.2012.08.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 06/01/2023]
Abstract
The increased global demand for biofuels has prompted the search for alternatives to edible oils for biodiesel production. Given the abundance and cost, waste and nonedible oils have been investigated as potential feedstocks. A recent research interest is the conversion of such feedstocks into biodiesel via enzymatic processes, which have considerable advantages over conventional alkali-catalyzed processes. To expand the viability of enzymatic biodiesel production, considerable effort has been directed toward process development in terms of biodiesel productivity, application to wide ranges of contents of water and fatty acids, adding value to glycerol byproducts, and bioreactor design. A cost evaluation suggested that, with the current enzyme prices, the cost of catalysts alone is not competitive against that of alkalis. However, it can also be expected that further process optimization will lead to a reduced cost in enzyme preparation as well as in downstream processes.
Collapse
Affiliation(s)
- Shinji Hama
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | | |
Collapse
|
28
|
DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G. Industrial use of immobilized enzymes. Chem Soc Rev 2013; 42:6437-74. [DOI: 10.1039/c3cs35506c] [Citation(s) in RCA: 897] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
A two-stage enzymatic ethanol-based biodiesel production in a packed bed reactor. J Biotechnol 2012; 162:407-14. [DOI: 10.1016/j.jbiotec.2012.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/30/2012] [Accepted: 05/09/2012] [Indexed: 11/22/2022]
|
30
|
Yoshida A, Hama S, Tamadani N, Noda H, Fukuda H, Kondo A. Continuous production of biodiesel using whole-cell biocatalysts: Sequential conversion of an aqueous oil emulsion into anhydrous product. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Yoshida A, Hama S, Tamadani N, Fukuda H, Kondo A. Improved performance of a packed-bed reactor for biodiesel production through whole-cell biocatalysis employing a high-lipase-expression system. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2011.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Hama S, Tamalampudi S, Yoshida A, Tamadani N, Kuratani N, Noda H, Fukuda H, Kondo A. Process engineering and optimization of glycerol separation in a packed-bed reactor for enzymatic biodiesel production. BIORESOURCE TECHNOLOGY 2011; 102:10419-10424. [PMID: 21924607 DOI: 10.1016/j.biortech.2011.08.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/13/2011] [Accepted: 08/17/2011] [Indexed: 05/31/2023]
Abstract
A process model for efficient glycerol separation during methanolysis in an enzymatic packed-bed reactor (PBR) was developed. A theoretical glycerol removal efficiency from the reaction mixture containing over 30% methyl esters was achieved at a high flow rate of 540 ml/h. To facilitate a stable operation of the PBR system, a batch reaction prior to continuous methanolysis was conducted using oils with different acid values and immobilized lipases pretreated with methyl esters. The reaction system successfully attained the methyl ester content of over 30% along with reduced viscosity and water content. Furthermore, to obtain a high methyl ester content above 96% continuously, long-term lipase stability was confirmed by operating a bench-scale PBR system for 550 h, in which the intermediates containing methyl esters and residual glycerides were fed into the enzyme-packed columns connected in series. Therefore, the developed process model is considered useful for industrial biodiesel production.
Collapse
Affiliation(s)
- Shinji Hama
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | | | | | | | | | | | | | | |
Collapse
|