1
|
Zhang J, Zhang M, Zhang J, Wang F, Wang Y, Zheng L. Overexpression of RtSYP121 confers cadmium colerance by promoting vesicle trafficking, maintaining ion homeostasis, and alleviating photosynthetic inhibition in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114620. [PMID: 36773437 DOI: 10.1016/j.ecoenv.2023.114620] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/22/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal in soil that seriously threatens crop production, food security, and human health. Syntaxins, a prototype family of Soluble N-ethyl-maleimide-associated protein receptors (SNAREs) involved in vesicle trafficking, are implicated in resistance to abiotic stresses, including Cd stress, but the molecular mechanisms underlying the involvement of syntaxins in Cd tolerance in plants are unclear. In this study, we isolated and functionally characterized the syntaxin gene RtSYP121 from Reaumuria trigyna to evaluate its potential for phytoremediation. RtSYP121 resides in the plasma membrane. The transcriptional level of RtSYP121 was strongly increased by salt, drought, and Cd stress. Overexpression of RtSYP121 significantly enhanced the Cd tolerance of transgenic Arabidopsis. The Cd tolerance of transgenic plants mainly depended on elevated vesicle trafficking, which increased the content of K+ and Ca2+ and thus decreased the accumulation of Cd2+ by regulating the delivery or activity of ion transporters, channels, and pumps. Moreover, overexpression of RtSYP121 in Arabidopsis ameliorated Cd stress-induced phytotoxic effects, including growth inhibition, ROS burst, photosynthetic impairment, and cell death. Therefore, we suggest that RtSYP121 plays multiple roles in the plant response to Cd stress by promoting vesicle trafficking, maintaining ion homeostasis, and alleviating photosynthetic inhibition.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Miao Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Jian Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Fang Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Yingchun Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Linlin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| |
Collapse
|
2
|
Ohshiro Y, Uraguchi S, Nakamura R, Takanezawa Y, Kiyono M. Cadmium transport activity of four mercury transporters (MerC, MerE, MerF and MerT) and effects of the periplasmic mercury-binding protein MerP on Mer-dependent cadmium uptake. FEMS Microbiol Lett 2020; 367:5942867. [PMID: 33119092 DOI: 10.1093/femsle/fnaa177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Mercury superfamily proteins, i.e. inner membrane-spanning proteins (MerC, MerE, MerF and MerT) and a periplasmic mercury-binding protein (MerP), transport mercury into the cytoplasm. A previous study demonstrated that a Mer transporter homolog exhibits cadmium transport activity; based on this, the present study aimed to evaluate the cadmium transport activity of MerC, MerE, MerF and MerT and the effects of MerP co-expression in Escherichia coli. Bacteria expressing MerC, MerE, MerF or MerT without MerP were more sensitive to cadmium and significantly absorbed more cadmium than did the control strain. Expression of MerP in combination with MerC, MerE, MerF or MerT increased the bacterial sensitivity to cadmium and cadmium accumulation compared to a single expression of MerC, MerE, MerF or MerT. Cadmium uptake mediated by MerC, MerE, MerF or MerT was inhibited under cold or acidic conditions. These findings suggest that MerC, MerE, MerF and MerT are broad-spectrum heavy metal transporters that mediate both mercury and cadmium transport into cells and that MerP accelerates the cadmium transport ability of MerC, MerE, MerF and MerT.
Collapse
Affiliation(s)
- Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
3
|
Shahid M, Khalid S, Bibi I, Bundschuh J, Khan Niazi N, Dumat C. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134749. [PMID: 32000322 DOI: 10.1016/j.scitotenv.2019.134749] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 05/09/2023]
Abstract
Environmental contamination by a non-essential and non-beneficial, although potentially toxic mercury (Hg), is becoming a great threat to the living organisms at a global scale. Owing to its various uses in numerous industrial processes, high amount of Hg is released into different environmental compartments. Environmental Hg contamination can result in food chain contamination, especially due to its accumulation in edible plant parts. Consumption of Hg-rich food is a key source of Hg exposure to humans. Since Hg does not possess any identified biological role and has genotoxic and carcinogenic potential, it is critical to monitor its biogeochemical behavior in the soil-plant system and its influence in terms of possible food chain contamination and human exposure. This review traces a plausible link among Hg levels, its chemical speciation and phytoavailability in soil, accumulation in plants, phytotoxicity and detoxification of Hg inside the plant. The role of different enzymatic (peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, glutathione peroxidase) and non-enzymatic (glutathione, phytochelatins, proline and ascorbic acid) antioxidants has also been elucidated with respect to enhanced generation of reactive radicles and resulting oxidative stress. The review also outlines Hg build-up in edible plant tissues and associated health risks. The biogeochemical role of Hg in the soil-plant system and associated health risks have been described with well summarized and up-to-date data in 12 tables and 4 figures. We believe that this comprehensive review article and meta-analysis of Hg data can be greatly valuable for scientists, researchers, policymakers and graduate-level students.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058 Toulouse, cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326 Auzeville-Tolosane, France; Association Réseau-Agriville (http://reseau-agriville.com/), France
| |
Collapse
|
4
|
Sone Y, Uraguchi S, Takanezawa Y, Nakamura R, Pan-Hou H, Kiyono M. A Novel Role of MerC in Methylmercury Transport and Phytoremediation of Methylmercury Contamination. Biol Pharm Bull 2017; 40:1125-1128. [DOI: 10.1248/bpb.b17-00213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuka Sone
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University
| | | | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University
| | | | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University
| |
Collapse
|
5
|
Bacterial heavy metal transporter MerC increases mercury accumulation in Arabidopsis thaliana. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Transgenic Approaches to Enhance Phytoremediation of Heavy Metal-Polluted Soils. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-35564-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Kiyono M, Oka Y, Sone Y, Tanaka M, Nakamura R, Sato MH, Pan-Hou H, Sakabe K, Inoue KI. Expression of the bacterial heavy metal transporter MerC fused with a plant SNARE, SYP121, in Arabidopsis thaliana increases cadmium accumulation and tolerance. PLANTA 2012; 235:841-850. [PMID: 22089884 DOI: 10.1007/s00425-011-1543-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/19/2011] [Indexed: 05/31/2023]
Abstract
The bacterial merC gene from the Tn21-encoded mer operon is a potential molecular tool for improving the efficiency of metal phytoremediation. Arabidopsis SNARE molecules, including SYP111, SYP121, and AtVAM3 (SYP22), were attached to the C-terminus of MerC to target the protein to various organelles. The subcellular localization of transiently expressed GFP-fused MerC-SYP111, MerC-SYP121, and MerC-AtVAM3 was examined in Arabidopsis suspension-cultured cells. We found that GFP-MerC-SYP111 and GFP-MerC-SYP121 localized to the plasma membrane, whereas GFP-AtVAM3 localized to the vacuolar membranes. These results demonstrate that SYP111/SYP121 and AtVAM3 target foreign molecules to the plasma membrane and vacuolar membrane, respectively. To enhance the efficiency and potential of plants to sequester and accumulate cadmium from contaminated sites, transgenic Arabidopsis plants expressing MerC, MerC-SYP111, MerC-SYP121, or MerC-AtVAM3 were generated. The transgenic plants that expressed MerC, MerC-SYP121, or MerC-AtVAM3 appeared to be normal, whereas the transgenic that expressed MerC-SYP111 exhibited severe growth defects. The transgenic plants expressing merC-SYP121 were more resistant to cadmium than the wild type and accumulated significantly more cadmium. Thus, the expression of MerC-SYP121 in the plant plasma membrane may provide an ecologically compatible approach for the phytoremediation of cadmium pollution.
Collapse
Affiliation(s)
- Masako Kiyono
- Department of Public Health and Molecular Toxicology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|