1
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
2
|
Gallegos A, Wu J. A Molecular Theory of Polypeptide Adsorption at Inorganic Surfaces. J Phys Chem B 2023; 127:794-805. [PMID: 36521053 DOI: 10.1021/acs.jpcb.2c06607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A faithful description of polypeptide adsorption at ionizable surfaces remains a theoretical challenge from a molecular perspective due to the strong coupling of local thermodynamic nonideality and ionizations of both the adsorbate and substrate that are sensitive to the solution condition such as pH, ion valence, and salt concentration. Building upon a recently developed coarse-grained model for natural amino acids in bulk electrolyte solutions, here we report a molecular theory applicable to polypeptide adsorption on ionizable inorganic surfaces over a broad range of inhomogeneous conditions. Our thermodynamic model is able to account for diverse solution effects as well as the amino-acid sequence on polypeptide adsorption and surface association such as hydrogen bonding or bidentate coordination. The theoretical predictions have been validated by extensive comparison with experimental data for the adsorption isotherms of three representative polypeptides at a titanium surface.
Collapse
Affiliation(s)
- Alejandro Gallegos
- Department of Chemical and Environmental Engineering, University of California, Riverside, California92521, United States
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California92521, United States
| |
Collapse
|
3
|
Drozd M, Duszczyk A, Ivanova P, Pietrzak M. Interactions of proteins with metal-based nanoparticles from a point of view of analytical chemistry - Challenges and opportunities. Adv Colloid Interface Sci 2022; 304:102656. [PMID: 35367856 DOI: 10.1016/j.cis.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Interactions of proteins with nanomaterials draw attention of many research groups interested in fundamental phenomena. However, alongside with valuable information regarding physicochemical aspects of such processes and their mechanisms, they more and more often prove to be useful from a point of view of bioanalytics. Deliberate use of processes based on adsorption of proteins on nanoparticles (or vice versa) allows for a development of new analytical methods and improvement of the existing ones. It also leads to obtaining of nanoparticles of desired properties and functionalities, which can be used as elements of analytical tools for various applications. Due to interactions with nanoparticles, proteins can also gain new functionalities or lose their interfering potential, which from perspective of bioanalytics seems to be very inviting and attractive. In the framework of this article we will discuss the bioanalytical potential of interactions of proteins with a chosen group of nanoparticles, and implementation of so driven processes for biosensing. Moreover, we will show both positive and negative (opportunities and challenges) aspects resulting from the presence of proteins in media/samples containing metal-based nanoparticles or their precursors.
Collapse
|
4
|
|
5
|
Tanaka M, Saito S, Kita R, Jang J, Choi Y, Choi J, Okochi M. Array-Based Screening of Silver Nanoparticle Mineralization Peptides. Int J Mol Sci 2020; 21:E2377. [PMID: 32235567 PMCID: PMC7178033 DOI: 10.3390/ijms21072377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
The use of biomolecules in nanomaterial synthesis has received increasing attention, because they can function as a medium to produce inorganic materials in ambient conditions. Short peptides are putative ligands that interact with metallic surfaces, as they have the potential to control the synthesis of nanoscale materials. Silver nanoparticle (AgNP) mineralization using peptides has been investigated; however, further comprehensive analysis must be carried out, because the design of peptide mediated-AgNP properties is still highly challenging. Herein, we employed an array comprising 200 spot synthesis-based peptides, which were previously isolated as gold nanoparticle (AuNP)-binding and/or mineralization peptides, and the AgNP mineralization activity of each peptide was broadly evaluated. Among 10 peptides showing the highest AgNP-synthesis activity (TOP10), nine showed the presence of EE and E[X]E (E: glutamic acid, and X: any amino acid), whereas none of these motifs were found in the WORST25 (25 peptides showing the lowest AgNP synthesis activity) peptides. The size and morphology of the particles synthesized by TOP3 peptides were dependent on their sequences. These results suggested not only that array-based techniques are effective for the peptide screening of AgNP mineralization, but also that AgNP mineralization regulated by peptides has the potential for the synthesis of AgNPs, with controlled morphology in environmentally friendly conditions.
Collapse
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan; (M.T.); (S.S.)
| | - Shogo Saito
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan; (M.T.); (S.S.)
| | - Reo Kita
- School of Science; Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan;
| | - Jaehee Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.J.); (Y.C.); (J.C.)
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.J.); (Y.C.); (J.C.)
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.J.); (Y.C.); (J.C.)
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan; (M.T.); (S.S.)
| |
Collapse
|
6
|
Schwaminger SP, Anand P, Borkowska-Panek M, Blank-Shim SA, Fraga-Garci A P, Fink K, Berensmeier S, Wenzel W. Rational Design of Iron Oxide Binding Peptide Tags. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8472-8481. [PMID: 31198043 DOI: 10.1021/acs.langmuir.9b00729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Owing to their extraordinary magnetic properties and low-cost production, iron oxide nanoparticles (IONs) are in the focus of research. In order to better understand interactions of IONs with biomolecules, a tool for the prediction of the propensity of different peptides to interact with IONs is of great value. We present an effective implicit surface model (EISM), which includes several interaction models. Electrostatic interactions, van der Waals interactions, and entropic effects are considered for the theoretical calculations. However, the most important parameter, a surface accessible area force field contribution term, derives directly from experimental results on the interactions of IONs and peptides. Data from binding experiments of ION agglomerates to different peptides immobilized on cellulose membranes have been used to parameterize the model. The work was carried out under defined environmental conditions; hence, effects because of changes, for example structure or solubility by changing the surroundings, are not included. EISM enables researchers to predict the binding of peptides to IONs, which we then verify with further peptide array experiments in an iterative optimization process also presented here. Negatively charged peptides were identified as best binders for IONs in Tris buffer. Furthermore, we investigated the constitution of peptides and how the amount and position of several amino acid side chains affect peptide-binding. The incorporation of glycine leads to higher binding scores compared to the incorporation of cysteine in negatively charged peptides.
Collapse
Affiliation(s)
- Sebastian Patrick Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering , Technical University of Munich , Boltzmannstra?e 15 , 85748 Garching , Germany
| | - Priya Anand
- Institute of Nanotechnology , Karlsruhe Institute of Technology , 76344 Eggenstein-Leopoldshafen , Germany
| | - Monika Borkowska-Panek
- Institute of Nanotechnology , Karlsruhe Institute of Technology , 76344 Eggenstein-Leopoldshafen , Germany
| | - Silvia Angela Blank-Shim
- Bioseparation Engineering Group, Department of Mechanical Engineering , Technical University of Munich , Boltzmannstra?e 15 , 85748 Garching , Germany
| | - Paula Fraga-Garci A
- Bioseparation Engineering Group, Department of Mechanical Engineering , Technical University of Munich , Boltzmannstra?e 15 , 85748 Garching , Germany
| | - Karin Fink
- Institute of Nanotechnology , Karlsruhe Institute of Technology , 76344 Eggenstein-Leopoldshafen , Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering , Technical University of Munich , Boltzmannstra?e 15 , 85748 Garching , Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology , Karlsruhe Institute of Technology , 76344 Eggenstein-Leopoldshafen , Germany
| |
Collapse
|
7
|
Imai K, Shimizu K, Kamimura M, Honda H. Interaction between porous silica gel microcarriers and peptides for oral administration of functional peptides. Sci Rep 2018; 8:10971. [PMID: 30030485 PMCID: PMC6054636 DOI: 10.1038/s41598-018-29345-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022] Open
Abstract
Functional peptides, peptides that have biological activities, have attracted attention as active ingredients of functional foods and health foods. In particular, for food applications, because orally ingested peptides are degraded by digestive enzymes in the stomach, novel oral administration methods that can prevent peptide degradation and successfully deliver them intestinally are desired. In the present study, we focused on porous silica gel, which has many useful characteristics, such as large surface area, pH responsive functional groups, size controllable pores, and approval as food additives. We investigated the possibility of using porous silica gel as a peptide degradation protective microcarrier. As a result, we found that heat treatment of the silica gel at 600 °C for 2 h remarkably enhanced the adsorbed amount of many peptides under acidic conditions, and negatively charged and highly hydrophobic peptides had suitable characteristics for oral intestinal delivery with silica gel. Finally, we demonstrated the degree of protection from pepsin degradation and found that the protection of DFELEDD peptide was 57.1 ± 3.9% when DFELEDD was mixed with the heat-treated silica gel. These results indicated that the heat-treated silica gel is promising for efficient oral intestinal delivery of hydrophobic negatively charged peptides.
Collapse
Affiliation(s)
- Kento Imai
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Mitsuhiro Kamimura
- Fuji Silysia Chemical Ltd., 1846, 2-Chome, Kozoji-Cho, Kasugai-Shi, Aichi, 487-0013, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
- Innovative Research Center for Preventive Medical Engineering, Nagoya University, Nagoya, 464-8601, Japan.
| |
Collapse
|
8
|
Kim D, Kwon SJ, Wu X, Sauve J, Lee I, Nam J, Kim J, Dordick JS. Selective Killing of Pathogenic Bacteria by Antimicrobial Silver Nanoparticle-Cell Wall Binding Domain Conjugates. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13317-13324. [PMID: 29619821 DOI: 10.1021/acsami.8b00181] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Broad-spectrum antibiotics indiscriminately kill bacteria, removing nonpathogenic microorganisms and leading to evolution of antibiotic resistant strains. Specific antimicrobials that could selectively kill pathogenic bacteria without targeting other bacteria in the natural microbial community or microbiome may be able to address this concern. In this work, we demonstrate that silver nanoparticles, suitably conjugated to a selective cell wall binding domain (CBD), can efficiently target and selectively kill bacteria. As a relevant example, CBDBA from Bacillus anthracis selectively bound to B. anthracis in a mixture with Bacillus subtilis, as well in a mixture with Staphylococcus aureus. This new biologically-assisted hybrid strategy, therefore, has the potential to provide selective decontamination of pathogenic bacteria with minimal impact on normal microflora.
Collapse
Affiliation(s)
- Domyoung Kim
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Xia Wu
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Jessica Sauve
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Inseon Lee
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Jahyun Nam
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| |
Collapse
|
9
|
Schwaminger S, Blank‐Shim SA, Borkowska‐Panek M, Anand P, Fraga‐García P, Fink K, Wenzel W, Berensmeier S. Experimental characterization and simulation of amino acid and peptide interactions with inorganic materials. Eng Life Sci 2018; 18:84-100. [PMID: 32624891 PMCID: PMC6999452 DOI: 10.1002/elsc.201700019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/02/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Inspired by nature, many applications and new materials benefit from the interplay of inorganic materials and biomolecules. A fundamental understanding of complex organic-inorganic interactions would improve the controlled production of nanomaterials and biosensors to the development of biocompatible implants for the human body. Although widely exploited in applications, the interaction of amino acids and peptides with most inorganic surfaces is not fully understood. To date, precisely characterizing complex surfaces of inorganic materials and analyzing surface-biomolecule interactions remain challenging both experimentally and computationally. This article reviews several approaches to characterizing biomolecule-surface interactions and illustrates the advantages and disadvantages of the methods presented. First, we explain how the adsorption mechanism of amino acids/peptides to inorganic surfaces can be determined and how thermodynamic and kinetic process constants can be obtained. Second, we demonstrate how this data can be used to develop models for peptide-surface interactions. The understanding and simulation of such interactions constitute a basis for developing molecules with high affinity binding domains in proteins for bioprocess engineering and future biomedical technologies.
Collapse
Affiliation(s)
| | | | | | - Priya Anand
- Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Paula Fraga‐García
- Bioseparation Engineering GroupTechnical University of MunichMünchenGermany
| | - Karin Fink
- Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Wolfgang Wenzel
- Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Sonja Berensmeier
- Bioseparation Engineering GroupTechnical University of MunichMünchenGermany
| |
Collapse
|
10
|
Blank-Shim SA, Schwaminger SP, Borkowska-Panek M, Anand P, Yamin P, Fraga-García P, Fink K, Wenzel W, Berensmeier S. Binding patterns of homo-peptides on bare magnetic nanoparticles: insights into environmental dependence. Sci Rep 2017; 7:14047. [PMID: 29070786 PMCID: PMC5656586 DOI: 10.1038/s41598-017-13928-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022] Open
Abstract
Magnetic nanoparticles (MNP) are intensively investigated for applications in nanomedicine, catalysis and biotechnology, where their interaction with peptides and proteins plays an important role. However, the characterisation of the interaction of individual amino acids with MNP remains challenging. Here, we classify the affinity of 20 amino acid homo-hexamers to unmodified iron oxide nanoparticles using peptide arrays in a variety of conditions as a basis to identify and rationally design selectively binding peptides. The choice of buffer system is shown to strongly influence the availability of peptide binding sites on the MNP surface. We find that under certain buffer conditions peptides of different charges can bind the MNP and that the relative strength of the interactions can be modulated by changing the buffer. We further present a model for the competition between the buffer and the MNP's electrostatically binding to the adsorption sites. Thereby, we demonstrate that the charge distribution on the surface can be used to correlate the binding of positively and negatively charged peptides to the MNP. This analysis enables us to engineer the binding of MNP on peptides and contribute to better understand the bio-nano interactions, a step towards the design of affinity tags for advanced biomaterials.
Collapse
Affiliation(s)
- Silvia A Blank-Shim
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching b. München, Germany
| | - Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching b. München, Germany
| | - Monika Borkowska-Panek
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Priya Anand
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peyman Yamin
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching b. München, Germany
| | - Karin Fink
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching b. München, Germany.
| |
Collapse
|
11
|
Tanaka M, Hikiba S, Yamashita K, Muto M, Okochi M. Array-based functional peptide screening and characterization of gold nanoparticle synthesis. Acta Biomater 2017; 49:495-506. [PMID: 27865964 DOI: 10.1016/j.actbio.2016.11.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/20/2023]
Abstract
Based on inorganic material production through biomineralization in organisms, the use of biological molecules in nanomaterial production has received increasing attention as a vehicle to synthesize inorganic materials with selected properties in ambient conditions. Among various biological molecules that interact with metallic surfaces, short peptides are putative ligand molecules as they exhibit potential to control the synthesis of nanoscale materials with tailored functions. Herein, using a spot synthesis-based peptide array, the gold nanoparticle (AuNP) binding activities of approximately 1800 peptides were evaluated and revealed various activities ranging from positive (high-affinity binding peptides) to negative (weak- or null-affinity binding peptides). Among 50 peptides showing the highest AuNP binding activity, 46 sequences showed the presence of tryptophan-based motifs including W[Xn]W, H[Xn]W, and W[Xn]H (W: tryptophan, X: any amino acid, n: 1-8 amino acid residues), whereas none of these motifs was found in the WORST50 peptides. Notably, three peptides showing the highest binding affinities possessed bi-functionality in AuNP binding and Au(III) reduction in solution and on solid surfaces. In addition, the characterization of truncated peptide derivatives revealed unique peptide motifs for their function expressions that also supported the importance of tryptophan-based motifs for peptide-AuNP binding. These findings open the door for peptide-mediated precise regulation of AuNP synthesis in ambient condition and for site dependent controlled AuNP integration onto nanotechnological devices. STATEMENT OF SIGNIFICANCE The development of a technique for functionally regulated nanosized material production in ambient condition is broadly required according to the expansion of nanomaterial based applications. Short peptides, which bind to metallic surfaces, have great potential for the technique development, but the realization remains a difficult challenge due to the lack of metal binding peptide varieties. Herein, approximately 1800 peptides with the gold nanoparticle (AuNP) binding activity are reported and characterized. Furthermore, by three highest binding peptides, the expression of bi-functionality in AuNP binding and Au(III) reduction was serendipitously discovered in solution and on solid surfaces. These findings will be attributed to new technique development of functional nanoparticle synthesis in mild condition, and for site-dependent AuNP integration in various nanotechnological devices.
Collapse
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan; JST ImPACT, Japan
| | - Shun Hikiba
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Kiyoto Yamashita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Masaki Muto
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan; JST ImPACT, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan; JST ImPACT, Japan.
| |
Collapse
|
12
|
Liang Alvin AW, Tanaka M, Okochi M. Characterization of particulate matter binding peptides screened from phage display. J Biosci Bioeng 2017; 123:621-624. [PMID: 28094103 DOI: 10.1016/j.jbiosc.2016.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
Particulate matter (PM), especially particulates with diameters of less than 2.5 μm, can penetrate the alveolar region and increase the risk of respiratory diseases. This has stimulated research efforts to develop detection methods so that counter measures can be taken. In this study, four PM binding peptides were obtained by phage display and binding characteristics of these peptides were investigated using the peptide array. The strongest binding peptide, WQDFGAVRSTRS, displayed a binding property, measured in terms of spot intensity, 11.4 times higher than that of the negative control, AAAAA. Inductively coupled plasma mass spectrometry (ICPMS) analysis of the transition metal compounds in the PM bound to the peptide spots was performed, and two peptides showed higher binding towards Cu and Zn compounds in PM. These results suggest that the screened peptides could serve as an indicator of transition metal compounds, which are related to adverse health effects, contained in PM.
Collapse
Affiliation(s)
- Aw Wei Liang Alvin
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; Office for the Impulsing Paradigm Change Through Disruptive Technologies Program (ImPACT), Japan Science and Technology Agency (JST), Tokyo Headquarters 2 K's Gobancho 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; Office for the Impulsing Paradigm Change Through Disruptive Technologies Program (ImPACT), Japan Science and Technology Agency (JST), Tokyo Headquarters 2 K's Gobancho 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.
| |
Collapse
|
13
|
OKOCHI M, KAMIYA T, OMASA T, TANAKA M, HONDA H. Rapid Colorimetric Antibody Detection Using a Dual-function Peptide Probe for Silver Nanoparticle Aggregation and Antibody Recognition. ANAL SCI 2016; 32:93-7. [DOI: 10.2116/analsci.32.93] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mina OKOCHI
- Department of Biotechnology, School of Engineering, Nagoya University
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology
| | - Tomohiro KAMIYA
- Department of Biotechnology, School of Engineering, Nagoya University
| | - Takeshi OMASA
- Department of Material and Life Science, Graduate School Engineering, Osaka University
| | - Masayoshi TANAKA
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology
| | - Hiroyuki HONDA
- Department of Biotechnology, School of Engineering, Nagoya University
| |
Collapse
|
14
|
Okochi M, Kuboyama M, Tanaka M, Honda H. Design of a dual-function peptide probe as a binder of angiotensin II and an inducer of silver nanoparticle aggregation for use in label-free colorimetric assays. Talanta 2015; 142:235-9. [PMID: 26003717 DOI: 10.1016/j.talanta.2015.04.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/17/2015] [Indexed: 01/21/2023]
Abstract
Label-free colorimetric assays using metallic nanoparticles have received much recent attention, for their application in simple and sensitive methods for detection of biomolecules. Short peptide probes that can bind to analyte biomolecules are attractive ligands in molecular nanotechnology; however, identification of biological recognition motifs is usually based on trial-and-error experiments. Herein, a peptide probe was screened for colorimetric detection of angiotensin II (Ang II) using a mechanism for non-crosslinking aggregation of silver nanoparticles (AgNPs). The dual-function peptides, which bind to the analyte and induce AgNP aggregation, were identified using a two-step strategy: (1) screening of an Ang II-binding peptide from an Ang II receptor sequence library, using SPOT technology, which enable peptides synthesis on cellulose membranes via an Fmoc method and (2) selection of peptide probes that effectively induce aggregation of AgNPs using a photolinker modified peptide array. Using the identified peptide probe, KGKNKRRR, aggregation of AgNPs was detected by observation of a pink color in the absence of Ang II, whereas AgNPs remained dispersed in the presence of Ang II (yellow). The color changes were not observed in the presence of other hormone molecules. Ang II could be detected within 15 min, with a detection limit of 10 µM, by measuring the ratio of absorbance at 400 nm and 568 nm; the signal could also be observed with the naked eye. These data suggest that the peptide identified here could be used as a probe for simple and rapid colorimetric detection of Ang II. This strategy for the identification of functional peptides shows promise for the development of colorimetric detection of various diagnostically important biomolecules.
Collapse
Affiliation(s)
- Mina Okochi
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Masashi Kuboyama
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masayoshi Tanaka
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hiroyuki Honda
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
15
|
Abstract
A molecular peptide beacon was designed for fluorescence detection of IgG in a homogeneous assay.
Collapse
Affiliation(s)
- M. Okochi
- Department of Biotechnology
- Graduate School of Engineering
- Nagoya University
- Nagoya
- Japan
| | - T. Sugita
- Department of Biotechnology
- Graduate School of Engineering
- Nagoya University
- Nagoya
- Japan
| | - M. Tanaka
- Department of Chemical Engineering
- Graduate School of Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - H. Honda
- Department of Biotechnology
- Graduate School of Engineering
- Nagoya University
- Nagoya
- Japan
| |
Collapse
|
16
|
Hassert R, Beck-Sickinger AG. Tuning peptide affinity for biofunctionalized surfaces. Eur J Pharm Biopharm 2013; 85:69-77. [DOI: 10.1016/j.ejpb.2013.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/05/2013] [Accepted: 02/12/2013] [Indexed: 01/16/2023]
|