1
|
Cañadas R, Martín-Sampedro R, González-Miquel M, González EJ, Ballesteros I, Eugenio ME, Ibarra D. Green solvents extraction-based detoxification to enhance the enzymatic hydrolysis of steam-exploded lignocellulosic biomass and recover bioactive compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118448. [PMID: 37413728 DOI: 10.1016/j.jenvman.2023.118448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
A novel strategy for pre-treated biomass detoxification combining emerging green solvents and low environmental impact extraction technologies was evaluated. Steam-exploded biomass was subjected to microwave-assisted or orbital shaking extraction using bio-based or eutectic solvents. The extracted biomass was enzymatically hydrolysed. The potential of this detoxification methodology was studied in terms of phenolic inhibitors extraction and sugar production improvement. The effect of adding a post-extraction water washing step before hydrolysis was also evaluated. Excellent results were achieved when steam-exploded biomass was subjected to the microwave-assisted extraction combined with the washing step. The highest sugar production was achieved when ethyl lactate was used as extraction agent (49.80 ± 3.10 g total sugar/L) over the control (30.43 ± 0.34 g total sugar/L). Results suggested that a detoxification step based on green solvents would be a promising option to extract phenolic inhibitors, which can be revalorized as antioxidants, and improve the sugar production from the extracted pre-treated biomass.
Collapse
Affiliation(s)
- Raquel Cañadas
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra. de La Coruña Km 7.5, 28040, Madrid, Spain.
| | - Raquel Martín-Sampedro
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra. de La Coruña Km 7.5, 28040, Madrid, Spain
| | - María González-Miquel
- Dept. of Industrial Chemical and Environmental Engineering, (ETSII, UPM), C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Emilio J González
- Dept. of Industrial Chemical and Environmental Engineering, (ETSII, UPM), C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Ignacio Ballesteros
- Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, 28040 Madrid, Spain
| | - María E Eugenio
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra. de La Coruña Km 7.5, 28040, Madrid, Spain
| | - David Ibarra
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra. de La Coruña Km 7.5, 28040, Madrid, Spain
| |
Collapse
|
2
|
Cairone F, Allevi D, Cesa S, Fabrizi G, Goggiamani A, Masci D, Iazzetti A. Valorisation of Side Stream Products through Green Approaches: The Rapeseed Meal Case. Foods 2023; 12:3286. [PMID: 37685219 PMCID: PMC10486371 DOI: 10.3390/foods12173286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Rapeseed meal (RSM) is a by-product of rapeseed oil extraction and is a rich source of bioactive compounds, including proteins and antioxidants. This study compared two methods for extracting antioxidants from RSM: conventional ethanol Soxhlet extraction and supercritical CO2 extraction. These procedures were applied to both native RSM and RSM after protein removal to evaluate their bio-compound composition and potential applications. HPLC-DAD, NMR, and GC/MS analyses revealed a rich polyphenolic profile in the extracts, including the presence of sinapic acid. The concentration of sinapic acid varied depending on the extraction method used. The anti-radical activity of the extracts was also analysed using the DPPH assay, which confirmed the potential of RSM as a source of antioxidants for use in cosmetics, food, and pharmaceutical formulations.
Collapse
Affiliation(s)
- Francesco Cairone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy; (F.C.); (S.C.); (G.F.); (A.G.)
| | - Dario Allevi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (D.A.); (D.M.)
- Policlinico Universitario ‘A. Gemelli’ Foundation-IRCCS, 00168 Rome, Italy
| | - Stefania Cesa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy; (F.C.); (S.C.); (G.F.); (A.G.)
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy; (F.C.); (S.C.); (G.F.); (A.G.)
| | - Antonella Goggiamani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy; (F.C.); (S.C.); (G.F.); (A.G.)
| | - Domiziana Masci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (D.A.); (D.M.)
- Policlinico Universitario ‘A. Gemelli’ Foundation-IRCCS, 00168 Rome, Italy
| | - Antonia Iazzetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (D.A.); (D.M.)
- Policlinico Universitario ‘A. Gemelli’ Foundation-IRCCS, 00168 Rome, Italy
| |
Collapse
|
3
|
|
4
|
Li J, Pedersen JN, Anankanbil S, Guo Z. Enhanced fish oil-in-water emulsions enabled by rapeseed lecithins obtained under different processing conditions. Food Chem 2018; 264:233-240. [PMID: 29853370 DOI: 10.1016/j.foodchem.2018.05.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
Abstract
It is hypothesized that rapeseed lecithins may have different emulsifying and antioxidant properties in delivering fish oil compared to soy lecithin based on previous studies. The results showed that in vitro antioxidant activities of rapeseed lecithins were stronger than those of soy lecithin. Emulsions stabilized by rapeseed based lecithins and DATEM were stable over 3 months at 4 °C, whereas the creaming of emulsions containing soy lecithin started immediately after its preparation. Zeta-potential of rapeseed lecithins was higher than soy lecithin and DATEM, which partially contributed to the emulsion stability. Although the particle sizes of emulsions prepared by rapeseed lecithins increased after 14 days storage, no creaming was observed. Lipid oxidation as indicated by TBARS values suggested that DATEM was the most unfavorable, followed by soy lecithin. It is concluded that rapeseed lecithins are better than soy lecithin and DATEM in terms of emulsion stability and antioxidant capability, respectively.
Collapse
Affiliation(s)
- Jingbo Li
- Department of Engineering, Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 10B, Building 3141, Room 1.28, 8000 Aarhus C, Denmark.
| | - Jacob Nedergaard Pedersen
- Department of Engineering, Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 10B, Building 3141, Room 1.28, 8000 Aarhus C, Denmark.
| | - Sampson Anankanbil
- Department of Engineering, Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 10B, Building 3141, Room 1.28, 8000 Aarhus C, Denmark.
| | - Zheng Guo
- Department of Engineering, Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 10B, Building 3141, Room 1.28, 8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Identification and quantification of phenolic compounds in rapeseed originated lecithin and antioxidant activity evaluation. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.06.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Li J, Zhou P, Liu H, Wu K, Xiao W, Gong Y, Lin J, Liu Z. Ethanol production from xylan-removed sugarcane bagasse using low loading of commercial cellulase. BIORESOURCE TECHNOLOGY 2014; 163:390-394. [PMID: 24841492 DOI: 10.1016/j.biortech.2014.04.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Xylan was always extracted as the feedstock for xylooligosaccharides production. The xylan-removed residue may contain high content of cellulose and thus had a possibility to be converted into ethanol. After soaked in 12% of NaOH at room temperature overnight, solubilization of cellulose, xylan, and lignin was 4.64%, 72.06%, and 81.87% respectively. The xylan-removed sugarcane bagasse (XRSB) was enzymatically hydrolyzed by using decreased cellulase loadings. The results showed that 7.5 FPU/g cellulose could obtain a cellulose conversion yield of 82%. Increasing the cellulase loading did not result in higher yield. Based on this, bioethanol production was performed using 7.5 FPU/g cellulose by employing fed-batch fermentation mode. The final ethanol concentration reached 40.59 g/L corresponding to 74.2% of the theoretical maximum. The high titer ethanol and low cellulase loading may reduce the overall cost.
Collapse
Affiliation(s)
- Jingbo Li
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| | - Pengfei Zhou
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hongmei Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Kejing Wu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wenjuan Xiao
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yingxue Gong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jianghai Lin
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zehuan Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
7
|
Li J, Lin J, Zhou P, Wu K, Liu H, Xiong C, Gong Y, Xiao W, Liu Z. One-pot simultaneous saccharification and fermentation: a preliminary study of a novel configuration for cellulosic ethanol production. BIORESOURCE TECHNOLOGY 2014; 161:171-8. [PMID: 24704838 DOI: 10.1016/j.biortech.2014.02.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 05/16/2023]
Abstract
Combination of size reduction and mild alkali pretreatment may be a feasible way to produce bioethanol without rinsing and detoxifying the solid substrate. Based on that, a fermentation configuration named one-pot SSF in which pretreatment and fermentation steps were integrated was developed. Additionally, the effect of laccase on fermentation performance was investigated. Delignification was the major effect of the alkali pretreatment at 121°C for 60min. The highest glucose and xylose yield, which obtained from the smallest particle at a substrate loading of 2%, was 6.75 and 2.71g/L, respectively. Laccase improved the fermentation efficiency by 6.8% for one-pot SSF and 5.7% for SSF. Bioethanol from one-pot SSF with laccase supplementation reached 67.56% of the theoretical maximum, whereas that from SSF with laccase supplementation reached 57.27%. One-pot SSF might be a promising configuration to produce bioethanol because of 100% solid recovery, and rinsing water and detoxification elimination.
Collapse
Affiliation(s)
- Jingbo Li
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| | - Jianghai Lin
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Pengfei Zhou
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Kejing Wu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hongmei Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Chunjiang Xiong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yingxue Gong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wenjuan Xiao
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zehuan Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
8
|
Li J, Zhou P, Liu H, Xiong C, Lin J, Xiao W, Gong Y, Liu Z. Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies. BIORESOURCE TECHNOLOGY 2014; 155:258-65. [PMID: 24457310 DOI: 10.1016/j.biortech.2013.12.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/18/2013] [Accepted: 12/26/2013] [Indexed: 05/17/2023]
Abstract
Sugarcane bagasse (SCB) resulting from different pretreatments was hydrolyzed by enzyme cocktails based on replacement of cellulase (Celluclast 1.5 L:Novozym 188=1FPU:4pNPGU) by xylanase or pectinase at different proportions. Lignin content of NaOH pretreated SCB and hemicellulose content of H2SO4 pretreated SCB were the lowest. NaOH pretreatment showed the best for monosaccharide production among the four pretreatments. Synergism was apparently observed between cellulase and xylanase for monosaccharide production from steam exploded SCB (SESB), NaOH, and H2O2 pretreated SCB. No synergism was observed between cellulase and pectinase for producing glucose. Additionally, no synergism was present when H2SO4 pretreated SCB was used. Replacement of 20% of the cellulase by xylanase enhanced the glucose yield by 6.6%, 8.8%, and 9.5% from SESB, NaOH, and H2O2 pretreated SCB, respectively. Degree of synergism between cellulase and xylanase had positive relationship with xylan content and was affected by hydrolysis time.
Collapse
Affiliation(s)
- Jingbo Li
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| | - Pengfei Zhou
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hongmei Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Chunjiang Xiong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jianghai Lin
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wenjuan Xiao
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yingxue Gong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zehuan Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|