1
|
Du J, You J, Cai Z, Wang H, Chen D, Zhu S, Liu D. Simultaneous removal of ammonia and sulfur odorants in biotrickling filters and N 2O production. BIORESOURCE TECHNOLOGY 2024; 403:130870. [PMID: 38777234 DOI: 10.1016/j.biortech.2024.130870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Research on the stability evaluation of biotrickling filters (BTFs) under harsh conditions and the bacterial adaptation process still needs to be improved. Herein, BTFs with polypropylene plastic (PP) and ceramic raschig rings (CRR) were investigated for a better understanding of the biodegradation of ammonia (NH3), hydrogen sulfide (H2S), and dimethyl sulfide (DMS). The results showed an excellent performance in removal efficiency (RE) for NH3 (91.6 %-99.9 %), H2S (RE: 55.3 %-99.5 %), and DMS (RE: 10.6 %-99.9 %). It was found that a more apparent positive correlation between N2O emission and pressure drop in CRR BTF (R2 = 0.92) than in PP BTF (R2 = 0.79) (P < 0.01). Low temperature promotes an increase in the abundance ofComamonasandBacillus. The polysaccharides in PP and CRR reactors decreased by 78.6 % and 68.1 % when temperature reduced from 25℃ to 8℃. This work provides a novel insight into understanding bacterial survival under harsh BTF environments.
Collapse
Affiliation(s)
- Jianghui Du
- Institute of Agri-biological Environment Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Juping You
- Institute of Agri-biological Environment Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhen Cai
- Institute of Agri-biological Environment Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Haiqiang Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongzhi Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Songming Zhu
- Institute of Agri-biological Environment Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Dezhao Liu
- Institute of Agri-biological Environment Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
2
|
Liu S, Gao PF, Li S, Fu H, Wang L, Dai Y, Fu M. A review of the recent progress in biotrickling filters: packing materials, gases, micro-organisms, and CFD. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125398-125416. [PMID: 38012483 DOI: 10.1007/s11356-023-31004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Organic pollutants in the air have serious consequences on both human health and the environment. Among the various methods for removing organic pollution gas, biotrickling filters (BTFs) are becoming more and more popular due to their cost-effective advantages. BTF can effectively degrade organic pollutants without producing secondary pollutants. In the current research on the removal of organic pollutants by BTF, improving the performance of BTF has always been a research hotspot. Researchers have conducted studies from different aspects to improve the removal performance of BTF for organic pollutants. Including research on the performance of BTF using different packing materials, research on the removal of various mixed pollutant gases by BTF, research on microbial communities in BTF, and other studies that can improve the performance of BTF. Moreover, computational fluid dynamics (CFD) was introduced to study the microscopic process of BTF removal of organic pollutants. CFD is a simulation tool widely used in aerospace, automotive, and industrial production. In the study of BTF removal of organic pollutants, CFD can simulate the fluid movement, mass transfer process, and biodegradation process in BTF in a visual way. This review will summarize the development of BTFs from four aspects: packing materials, mixed gases, micro-organisms, and CFD, in order to provide a reference and direction for the future optimization of BTFs.
Collapse
Affiliation(s)
- Shuaihao Liu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Pan-Feng Gao
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China.
| | - Shubiao Li
- Xiamen Lian Chuang Dar Technology Co., Ltd., Xiamen, 361000, China
| | - Haiyan Fu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Liyong Wang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yuan Dai
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Muxing Fu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| |
Collapse
|
3
|
Removal of Volatile Organic Compounds (VOCs) from Air: Focus on Biotrickling Filtration and Process Modeling. Processes (Basel) 2022. [DOI: 10.3390/pr10122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biotrickling filtration is a well-established technology for the treatment of air polluted with odorous and volatile organic compounds (VOCs). Besides dozens of successful industrial applications of this technology, there are still gaps in a full understanding and description of the mechanisms of biotrickling filtration. This review focuses on recent research results on biotrickling filtration of air polluted with single and multiple VOCs, as well as process modeling. The modeling offers optimization of a process design and performance, as well as allows deeper understanding of process mechanisms. An overview of the developments of models describing biotrickling filtration and conventional biofiltration, as primarily developed and in many aspects through similar processes, is presented in this paper.
Collapse
|
4
|
Lamprea Pineda PA, Demeestere K, Toledo M, Van Langenhove H, Walgraeve C. Enhanced removal of hydrophobic volatile organic compounds in biofilters and biotrickling filters: A review on the use of surfactants and the addition of hydrophilic compounds. CHEMOSPHERE 2021; 279:130757. [PMID: 34134429 DOI: 10.1016/j.chemosphere.2021.130757] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The use of biological reactors to remove volatile organic compounds (VOCs) from waste gas streams has proven to be a cost-effective and sustainable technique. However, hydrophobic VOCs exhibit low removal, mainly due to their limited bioavailability for the microorganisms. Different strategies to enhance their removal in bio(trickling)filters have been developed with promising results. In this review, two strategies, i.e. the use of surfactants and hydrophilic compounds, for enhancing the removal of hydrophobic VOCs in bio(trickling)filters are discussed. The complexity of the processes and mechanisms behind both strategies are addressed to fully understand and exploit their potential and rapid implementation at full-scale. Mass transfer and biological aspects are discussed for each strategy, and an in-depth comparison between studies carried out over the last two decades has been performed. This review identifies additional strategies to further improve the application of (bio)surfactants and/or hydrophilic VOCs, and it provides recommendations for future studies in this field.
Collapse
Affiliation(s)
- Paula Alejandra Lamprea Pineda
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Manuel Toledo
- Department of Inorganic Chemistry and Chemical Engineering, Faculty of Science, University of Cordoba (Campus Universitario de Rabanales), Carretera N-IV, Km 396, Marie Curie Building, 14071, Cordoba, Spain.
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Christophe Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| |
Collapse
|
5
|
Evaluation of Immobilization of Selected Peat-Isolated Yeast Strains of the Species Candida albicans and Candida subhashii on the Surface of Artificial Support Materials Used for Biotrickling Filtration. Processes (Basel) 2020. [DOI: 10.3390/pr8070801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The paper describes the process of n-butanol abatement by unicellular fungi, able to deplete n-butanol content in gas, by using n-butanol as source of carbon. Isolated and identified fungi species Candida albicans and Candida subhashii were subjected to a viability process via assimilation of carbon from hydrophilic and hydrophobic compounds. The isolates, which exhibited the ability to assimilate carbon, were immobilized on four different types of artificial support materials used for biotrickling filtration. Application of optical microscopy, flow cytometry and the tests employing propidium iodide and annexin V revealed viability of the fungi isolated on support materials’ surfaces at the average level of 95%. The proposed method of immobilization and its evaluation appeared to be effective, cheap and fast. Based on performed comparative analyses, it was shown that polyurethane foam and Bialecki rings (25 × 25) could be attractive support materials in biotrickling filtration.
Collapse
|
6
|
Improved biodegradation of hydrophobic volatile organic compounds from the air stream in a multilayer biofilter. MethodsX 2019; 6:2052-2056. [PMID: 31667103 PMCID: PMC6812370 DOI: 10.1016/j.mex.2019.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/15/2019] [Indexed: 11/29/2022] Open
Abstract
Biofiltration of n-hexane as a representative of hydrophobic volatile organic compounds (VOCs) at presence and absence of rhamnolipid biosurfactant was studied using a multilayer biofilter packed with scoria, compost, poplar tree skin and sugar beet pulp, for 131 days. The concentration of n-hexane was measured by a gas chromatograph coupled with a flame ionization detector (GC/FID). The results showed that the mean removal efficiency (RE) of n-hexane at the presence of the biosurfactant was two times higher than that at absence of the biosurfactant. According to the results, rhamnolipid can enhance the efficiency of biofiltration of VOCs from polluted air streams.
Collapse
|
7
|
Mezgebe B, Sorial G, Wendell D, Sahle-Demessie E. Effectiveness of biosurfactant for the removal of trihalomethanes by biotrickling filter. ENGINEERING REPORTS : OPEN ACCESS 2019; 1:1-12031. [PMID: 33015590 PMCID: PMC7529106 DOI: 10.1002/eng2.12031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
In this study, the biodegradation of a mixture of two trihalomethane (THM) compounds, chloroform (CF) and dichlorobromomethane (DCBM), was evaluated using two laboratory-scale biotrickling filters (BTFs). The two BTFs, hereby designated as "BTF-A" and "BTF-B," were run parallel and used ethanol as co-metabolite at different loading rates (LRs), and a lipopeptide-type biosurfactant that was generated by the gram-positive bacteria, Surfactin, respectively. The results using BTF-A showed that adding ethanol at a higher rate of 4.59 g/(m3 h) resulted in removal efficiencies of 85% and 87% for CF and DCBM, respectively. Conversely, for the same LR, the use of Surfactin without ethanol (BTF-B) showed comparable removal efficiencies of 85% and 80% for CF and DCBM, respectively. The maximum rate constant for CF and DCBM for the BTF-A was 0.00203 s-1 and 0.0022 s-1, respectively. For the same THMs LR, similar reaction rate constants resulted for the BTF-B. Further studies were conducted to investigate and understand the microbial diversity within both BTFs. The result indicated that for BTF with co-metabolite, Fusarium sp. was the most dominant fungi over 98% followed by F. Solani with less than 2%. F. oxysporum and Fusarium sp. were instead the dominant fungi for the BTF with Surfactin. Before introducing the Surfactin into the BTF, the batch experiment was conducted to evaluate the effectiveness of synthetic surfactant as compared to a biosurfactant (Surfactin). In this regard, vials with Surfactin showed better performance than vials with Tomadol 25-7 (synthetic surfactant).
Collapse
Affiliation(s)
- Bineyam Mezgebe
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, 701 Engineering Research Center, 2901 Woodside Drive, P.O. Box 210012, Cincinnati, OH 45221-0012, USA
| | - George Sorial
- Author to whom all correspondence should be addressed, , Tel: +1 (513) 556-2987
| | - David Wendell
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, 701 Engineering Research Center, 2901 Woodside Drive, P.O. Box 210012, Cincinnati, OH 45221-0012, USA
| | - E. Sahle-Demessie
- Senior Scientist, US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45268, USA
| |
Collapse
|
8
|
Miller U, Sówka I, Adamiak W. The effect of betaine on the removal of toluene by biofiltration. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0832-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Wu H, Yan H, Quan Y, Zhao H, Jiang N, Yin C. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:409-419. [PMID: 29883876 DOI: 10.1016/j.jenvman.2018.06.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Pollution caused by volatile organic compounds (VOCs) and odorous pollutants in the air can produce severe environmental problems. In recent years, the emission control of VOCs and odorous pollutants has become a crucial issue owing to the adverse effect on humans and the environment. For treating these compounds, biotrickling filter (BTF) technology acts as an environment friendly and cost-effective alternative to conventional air pollution control technologies. Besides, low concentration of VOCs and odorous pollutants can also be effectively removed using BTF systems. However, the VOCs and odorants removal performance by BTF may be limited by the hydrophobicity, toxicity, and low bioavailability of these pollutants. To solve these problems, this review summarizes the design, mechanism, and common analytical methods of recent BTF advances. In addition, the operating conditions, mass transfer, packing materials and microorganisms (which are the critical parameters in a BTF system) were evaluated and discussed in view of improving the removal performance of BTFs. Further research on these specific topics, together with the combination of BTF technology with other technologies, should improve the removal performance of BTFs.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Huayu Yan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Yue Quan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Huazhang Zhao
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Nanzhe Jiang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Chengri Yin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China.
| |
Collapse
|
10
|
Yang C, Qian H, Li X, Cheng Y, He H, Zeng G, Xi J. Simultaneous Removal of Multicomponent VOCs in Biofilters. Trends Biotechnol 2018; 36:673-685. [DOI: 10.1016/j.tibtech.2018.02.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 11/28/2022]
|
11
|
Mezgebe B, Palanisamy K, Sorial GA, Sahle-Demessie E, Hassan AA, Lu J. Comparative Study on the Performance of Anaerobic and Aerobic Biotrickling Filter for Removal of Chloroform. ENVIRONMENTAL ENGINEERING SCIENCE 2018; 35:462-471. [PMID: 32704228 PMCID: PMC7376754 DOI: 10.1089/ees.2017.0275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Use of biotrickling filter (BTF) for gas phase treatment of volatile trihalomethanes (THMs) stripped from water treatment plants could be an attractive treatment option. The aim of this study is to use laboratory-scale anaerobic BTF to treat gaseous chloroform (recalcitrant to biological transformation) as a model THM and compare results with aerobic BTF. Additional investigations were conducted to determine the microbial diversity present within the BTFs. Chloroform is a hydrophobic volatile THM known to be difficult to biodegrade. To improve the degradation process, ethanol was used as a cometabolite at a different ratio to chloroform. The experimental plan was designed to operate one BTF under anaerobic condition and the other one under aerobic acidic condition. Higher elimination capacity (EC) of 0.23 ± 0.01 g/[m3·h] was observed with a removal efficiency of 80.9% ± 4% for the aerobic BTF operating at pH 4 for the concentration ratio of 1:40 chloroform to ethanol. For similar ratio, the anaerobic BTF supported lower removal efficiency of 59% ± 10% with corresponding lower EC of 0.16 ± 0.01 g/[m3·h]. Carbon recovery acquired for anaerobic and aerobic BTFs was 59% and 63%, respectively. The loading rate for chloroform on both BTFs was 0.27 g/[m3·h] (per m3 of filter bed volume). Variations of the microbial community were attributed to degradation of chloroform in each BTF. Azospira oryzae and Azospira restrica were the dominant bacteria and potential candidates for chloroform degradation for the anaerobic BTF, whereas Fusarium sp. and Fusarium solani were the dominant fungi and potential candidates for chloroform degradation in the aerobic BTF.
Collapse
Affiliation(s)
- Bineyam Mezgebe
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Keerthisaranya Palanisamy
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - George A Sorial
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Endalkachew Sahle-Demessie
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, Ohio
| | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jingrang Lu
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, Ohio
| |
Collapse
|
12
|
Raj I, Vaidya AN, Pandey RA, Bansiwal A, Deshmukh S, Purohit HJ. Recent advancements in the mitigation of obnoxious nitrogenous gases. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 205:319-336. [PMID: 29035719 DOI: 10.1016/j.jenvman.2017.09.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/05/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
Nitrogenous gaseous emissions commonly have an obnoxious odor associated with it, which when discharged into the environment results in serious environmental problems and health hazards. Several strategies for mitigation of nitrogenous odorants have been reported which include physical, chemical and biological methods. Biological treatments are widely employed because of their efficiency even at low concentration, where physical and chemical methods are not effective. Most commonly used biological treatment methods are biofiltration, biotrickling filters and membrane bioreactors with innovative reactor design, mixing pattern, and air sparging, for example FEBR, ALR, etc. These treatment methods require a critical assessment for the mitigation of obnoxious nitrogen emissions, especially in the context of environmental protection. This review offers a critical evaluation of treatment methods for the mitigation of nitrogenous odorous compound with a key emphasis on biological treatment systems. Also, various mathematical modelling techniques required for optimized operation of biotreatment systems has been discussed.
Collapse
Affiliation(s)
- Ishan Raj
- Environmental Biotechnology and Genomics Division, CSIR - National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - A N Vaidya
- Solid and Hazardous Waste Management Division, CSIR - National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - R A Pandey
- Environmental Biotechnology Division, CSIR-NEERI, Nagpur, India.
| | - Amit Bansiwal
- Environmental Material Division, CSIR - National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Sharvari Deshmukh
- Environmental Biotechnology and Genomics Division, CSIR - National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR - National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India
| |
Collapse
|
13
|
Mezgebe B, Sorial GA, Sahle-Demessie E, Hassan AA, Lu J. Performance of Anaerobic Biotrickling Filter and its Microbial Diversity for the Removal of Stripped Disinfection Byproducts. WATER, AIR, AND SOIL POLLUTION 2017; 228:1-437. [PMID: 29225380 PMCID: PMC5716356 DOI: 10.1007/s11270-017-3616-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/18/2017] [Indexed: 05/29/2023]
Abstract
The objective of this research was to evaluate the biodegradation of chloroform by using biotrickling filter (BTF) and determining the dominant bacteria responsible for the degradation. The research was conducted in three phases under anaerobic condition, namely, in the presence of co-metabolite (Phase I), in the presence of co-metabolite and surfactant (Phase II) and in the presence of surfactant but no co-metabolite (Phase III). The results showed that the presence of ethanol as a co-metabolite provided 49% removal efficiency. The equivalent elimination capacity (EC) was 0.13 g/(m3.hr). The addition of Tomadol 25 - 7 as a surfactant in the nutrient solution increased the removal efficiency of chloroform to 64% with corresponding EC of 0.17 g/(m3.hr). This research also investigated the overall microbial ecology of the BTF utilizing culture-independent gene sequencing alignment of the 16S rRNA allowing identification of isolated species. Taxonomical composition revealed the abundance of deltaproteobacteria and deltaproteobacteria with species level of 97%. A. oryzae (formally dechlorosoma suillum), A. restrica and Geobacter spp. together with other similar groups were the most valuable bacteria for the degradation of chloroform.
Collapse
Affiliation(s)
- Bineyam Mezgebe
- PhD Candidate, Department of Biomedical, Chemical, and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, 701 Engineering Research Center, 2901 Woodside Drive, P.O. Box 210012, Cincinnati, OH 45221-0012, USA
| | - George A. Sorial
- Author to whom all correspondence should be addressed, , Tel: +1 (513) 556-2987
| | - E. Sahle-Demessie
- Senior Scientist, US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45268, USA
| | - Ashraf Aly Hassan
- Research Assistant Professor, Department of Civil Engineering, College of Engineering, University of Nebraska–Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105
| | - Jingrang Lu
- US Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH, USA
| |
Collapse
|
14
|
Palanisamy K, Mezgebe B, Sorial GA, Sahle-Demessie E. Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under Acidic Conditions. WATER, AIR, AND SOIL POLLUTION 2016; 227:10.1007/s11270-016-3194-3. [PMID: 32704191 PMCID: PMC7377216 DOI: 10.1007/s11270-016-3194-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/22/2016] [Indexed: 05/28/2023]
Abstract
In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and ethanol. The TBAB is composed of pelleted diatomaceous earth filter media inoculated with filamentous fungi species, which served as the principle biodegrading microorganism. The removal efficiencies of 5 ppmv of chloroform mixed with different ratios of ethanol as cometabolite (25, 50, 100, 150, and 200 ppmv) ranged between 69.9 and 80.9%. The removal efficiency, reaction rate kinetics, and the elimination capacity increased proportionately with an increase in the cometabolite concentration. The carbon recovery from the TBAB amounted to 69.6% of the total carbon input. It is postulated that the remaining carbon contributed to excess biomass yield within the system. Biomass control strategies such as starvation and stagnation were employed at different phases of the experiment. The chloroform removal kinetics provided a maximum reaction rate constant of 0.0018 s-1. The highest ratio of chemical oxygen demand (COD)removal/nitrogenutilization was observed at 14.5. This study provides significant evidence that the biodegradation of a highly chlorinated methane can be favored by cometabolism in a fungi-based TBAB.
Collapse
Affiliation(s)
- Keerthisaranya Palanisamy
- Department of Biomedical, Chemical and Environmental Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH, USA
| | - Bineyam Mezgebe
- Department of Biomedical, Chemical and Environmental Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH, USA
| | - George A Sorial
- Department of Biomedical, Chemical and Environmental Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH, USA
| | | |
Collapse
|
15
|
Pérez M, Álvarez-Hornos F, Engesser K, Dobslaw D, Gabaldón C. Removal of 2-butoxyethanol gaseous emissions by biotrickling filtration packed with polyurethane foam. N Biotechnol 2016; 33:263-72. [DOI: 10.1016/j.nbt.2015.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
|
16
|
D'Alessio M, Yoneyama B, Kirs M, Kisand V, Ray C. Pharmaceutically active compounds: Their removal during slow sand filtration and their impact on slow sand filtration bacterial removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 524-525:124-35. [PMID: 25889551 DOI: 10.1016/j.scitotenv.2015.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/04/2015] [Accepted: 04/05/2015] [Indexed: 05/26/2023]
Abstract
Slow sand filtration (SSF) has been widely used as a means of providing potable water due to its efficacy, low cost, and minimal maintenance. Advances in analytical instrumentation have revealed the occurrence of pharmaceutically active compounds (PhACs) in surface water as well as in groundwater. It is unclear if the presence of these compounds in the feed water can interfere with the performances of an SSF unit. The aim of this work was to examine i) the ability of two SSF units to remove six PhACs (caffeine, carbamazepine, 17-β estradiol [E2], estrone [E1], gemfibrozil, and phenazone), and ii) the impact of these PhACs on the removal of bacteria by two SSF units. The presence of PhACs in feed water for SSF can occur in surface waters impacted by wastewater or leakage from sewers and septic tanks, as well as in developing countries where unregulated use and improper disposal are prevalent. Two pilot-scale SSF units were used during the study. Unit B1 was fed with stream water with 1% of primary effluent added, while unit B2 was fed with stream water alone. Although limited removal (<10%) of carbamazepine, gemfibrozil, and phenazone occurred, the complete removal of caffeine, and the partial removal (11-92%) of E2 and E1 were observed in the two SSF units. The results of this study suggest that the occurrence of the selected PhACs, probably estrogens and caffeine, in the feed water at 50 μg L(-1) affected the ability of the schmutzdecke to remove total coliform and Escherichia coli. The bacterial removal achieved within the schmutzdecke dropped from 95% to less than 20% by the end of the study. This decrease in removal may be related to the change in the microbial community within the schmutzdecke. A diverse microbial community, including Bacteroidetes and several classes of Proteobacteria, was replaced by a microbial community in which Gammaproteobacteria was the predominant phylum (99%). Despite the low removal achieved within the schmutzdecke, removal of total coliform and E. coli greater than 99% occurred after both SSF units throughout the study. Bacterial removal occurred in the upper half of the sand filter. This was probably due to a diverse microbial community established in the packing material, in which Bacteroidetes (13-25%), Acidobacteria (7-17%) and several classes of Proteobacteria (35-52%) (Alpha-, Beta-, Delta-, and Gammaproteobacteria) were the predominant phyla.
Collapse
Affiliation(s)
- Matteo D'Alessio
- Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States; Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Bunnie Yoneyama
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Marek Kirs
- Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Chittaranjan Ray
- Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States; Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States.
| |
Collapse
|
17
|
Tu Y, Yang C, Cheng Y, Zeng G, Lu L, Wang L. Effect of saponins on n-hexane removal in biotrickling filters. BIORESOURCE TECHNOLOGY 2015; 175:231-238. [PMID: 25459827 DOI: 10.1016/j.biortech.2014.10.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/04/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
Saponins was applied to enhance the removal of n-hexane in a biotrickling filter (BTF) in this study. Comparison experiments were carried out to examine the effect of saponins on n-hexane removal in two BTFs at various saponins concentrations, n-hexane loading rates (LRs) and gas empty bed contact times (EBCTs). Results show that the optimum concentration of saponins in nutrient feed was 50.0mgL(-1). When organic LR of n-hexane increased from 47.8 to 120.0gm(-3)h(-1), the removal efficiency (RE) for BTF1 (with saponins) and BTF2 (without saponins) decreased from 91.3% to 83.3% and from 62.8% to 56.8%, respectively. As gas EBCT decreased from 30.0 to 7.5s, the RE declined from 88.4% to 64.5% for BTF1 and from 61.4% to 38.3% for BTF2. Saponins could also decrease the biomass accumulation rate within the medium bed. These results could be referred in the design and operation of BTFs for hydrophobic VOC removal.
Collapse
Affiliation(s)
- Yanhong Tu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Yan Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Lu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|