1
|
Eigenfeld M, Wittmann L, Kerpes R, Schwaminger S, Becker T. Quantification methods of determining brewer's and pharmaceutical yeast cell viability: accuracy and impact of nanoparticles. Anal Bioanal Chem 2023; 415:3201-3213. [PMID: 37083758 PMCID: PMC10287788 DOI: 10.1007/s00216-023-04676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
For industrial processes, a fast, precise, and reliable method of determining the physiological state of yeast cells, especially viability, is essential. However, an increasing number of processes use magnetic nanoparticles (MNPs) for yeast cell manipulation, but their impact on yeast cell viability and the assay itself is unclear. This study tested the viability of Saccharomyces pastorianus ssp. carlsbergensis and Pichia pastoris by comparing traditional colourimetric, high-throughput, and growth assays with membrane fluidity. Results showed that methylene blue staining is only reliable for S. pastorianus cells with good viability, being erroneous in low viability (R2 = 0.945; [Formula: see text] = 5.78%). In comparison, the fluorescence microscopy-based assay of S. pastorianus demonstrated a coefficient of determination of R2 = 0.991 at [Formula: see text] ([Formula: see text] = 2.50%) and flow cytometric viability determination using carboxyfluorescein diacetate (CFDA), enabling high-throughput analysis of representative cell numbers; R2 = 0.972 ([Formula: see text]; [Formula: see text] = 3.89%). Membrane fluidity resulted in a non-linear relationship with the viability of the yeast cells ([Formula: see text]). We also determined similar results using P. pastoris yeast. In addition, we demonstrated that MNPs affected methylene blue staining by overestimating viability. The random forest model has been shown to be a precise method for classifying nanoparticles and yeast cells and viability differentiation in flow cytometry by using CFDA. Moreover, CFDA and membrane fluidity revealed precise results for both yeasts, also in the presence of nanoparticles, enabling fast and reliable determination of viability in many experiments using MNPs for yeast cell manipulation or separation.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Leonie Wittmann
- Chair of Bioseparation Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstr. 15, 85748 Garching, Germany
| | - Roland Kerpes
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Sebastian Schwaminger
- Chair of Bioseparation Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstr. 15, 85748 Garching, Germany
- Division of Medicinal Chemistry, Medical University of Graz, Otto-Loewi Research Center, Neue Stiftingtalstr. 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Thomas Becker
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| |
Collapse
|
2
|
Eigenfeld M, Wittmann L, Kerpes R, Schwaminger SP, Becker T. Studying the impact of cell age on the yeast growth behaviour of Saccharomyces pastorianus var. carlsbergensis by magnetic separation. Biotechnol J 2023; 18:e2200610. [PMID: 37014328 DOI: 10.1002/biot.202200610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Despite the fact that yeast is a widely used microorganism in the food, beverage, and pharmaceutical industries, the impact of viability and age distribution on cultivation performance has yet to be fully understood. For a detailed analysis of fermentation performance and physiological state, we introduced a method of magnetic batch separation to isolate daughter and mother cells from a heterogeneous culture. By binding functionalised iron oxide nanoparticles, it is possible to separate the chitin-enriched bud scars by way of a linker protein. This reveals that low viability cultures with a high daughter cell content perform similarly to a high viability culture with a low daughter cell content. Magnetic separation results in the daughter cell fraction (>95%) showing a 21% higher growth rate in aerobic conditions than mother cells and a 52% higher rate under anaerobic conditions. These findings emphasise the importance of viability and age during cultivation and are the first step towards improving the efficiency of yeast-based processes.
Collapse
Affiliation(s)
- Marco Eigenfeld
- TUM School of Life Science, Technical University of Munich, Chair of Brewing and Beverage Technology, Freising, Germany
| | - Leonie Wittmann
- TUM School of Engineering and Design, Technical University of Munich, Chair of Bioseparation Engineering, Garching, Germany
| | - Roland Kerpes
- TUM School of Life Science, Technical University of Munich, Chair of Brewing and Beverage Technology, Freising, Germany
| | - Sebastian P Schwaminger
- TUM School of Engineering and Design, Technical University of Munich, Chair of Bioseparation Engineering, Garching, Germany
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Thomas Becker
- TUM School of Life Science, Technical University of Munich, Chair of Brewing and Beverage Technology, Freising, Germany
| |
Collapse
|
3
|
Effects of Atmospheric Plasma Corona Discharge on Saccharomyces cerevisiae: Viability, Permeability, and Morphology. Foods 2023; 12:foods12020381. [PMID: 36673471 PMCID: PMC9857411 DOI: 10.3390/foods12020381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Food spoilage is a routine challenge in food production. Saccharomyces cerevisiae is a major contaminating microorganism associated with fruit pulps and juices. Our study demonstrated the effect of a plasma corona discharge on S. cerevisiae viability, membrane permeability, and morphology when the cells were prepared in both dry and wet modes. The S. cerevisiae viability was examined as a function of the duration of plasma exposure, the sample's distance from the treating head, initial cell concentration, and yeast suspension volume. The results showed a linear correlation between the exposure duration and the CFU/mL in both dry and wet modes. When the initial yeast concentration was 106 CFU/mL, complete eradication in the dry and wet modes occurred after 45 and 240 s, respectively. Exposure of different initial concentrations of S. cerevisiae to plasma in dry (20 s) or wet (90 s) mode led to 2 to 3 orders of magnitude reduction. In both modes, there was total eradication when the initial cell concentration was about 103 CFU/mL. The cell-membrane permeability was examined using a flow cytometer and the fluorescent dye propidium iodide (PI). Plasma treatment in the dry mode for 30 and 45 s led to 51% and 76% PI-positive cells. Similar results were obtained in the wet mode but with a longer exposure for 120 and 240 s, respectively. Atmospheric plasma may provide disinfection technology for the food industry in a short process without heating.
Collapse
|
4
|
Aspartic Acid Stabilized Iron Oxide Nanoparticles for Biomedical Applications. NANOMATERIALS 2022; 12:nano12071151. [PMID: 35407269 PMCID: PMC9000734 DOI: 10.3390/nano12071151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 01/23/2023]
Abstract
Aspartic acid stabilized iron oxide nanoparticles (A-IONPs) with globular shape and narrow size distribution were prepared by the co-precipitation method in aqueous medium. A quantum-mechanical approach to aspartic acid optimized structure displayed negative charged sites, relatively high dipole moment, and hydrophilicity, which recommended it for interaction with iron cations and surrounding water electrical dipoles. A-IONPs were characterized by TEM, XRD, ATR-FTIR, EDS, DSC, TG, DLS, NTA, and VSM techniques. Theoretical study carried out by applying Hartree-Fock and density functional algorithms suggested that some aspartic acid properties related to the interaction can develop with nanoparticles and water molecules. The results of experimental investigation showed that the mean value of particle physical diameters was 9.17 ± 2.2 nm according to TEM image analysis, the crystallite size was about 8.9 nm according to XRD data, while the magnetic diameter was about 8.8 nm, as was determined from VSM data interpretation with Langevin's theory. The A-IONP suspension was characterized by zeta-potential of about -11.7 mV, while the NTA investigation revealed a hydrodynamic diameter of 153.9 nm. These results recommend the A-IONP suspension for biomedical applications.
Collapse
|
5
|
Garde-Cerdán T, Souza-da Costa B, Rubio-Bretón P, Pérez-Álvarez EP. Nanotechnology: recent advances in viticulture and enology. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6156-6166. [PMID: 34184284 DOI: 10.1002/jsfa.11406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/12/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, nanoscience is a leading modern science that has a major impact on the food, pharmaceutical, and agriculture sectors. Several nanomaterials show a great potential for use during vine growing and winemaking processes. In viticulture, nanotechnology can be applied to protect vines against phytopathogens and to improve grape yield and quality. Thus, nanotechnology may allow the use of lesser amounts of phytochemical compounds, reducing environmental impact and promoting a more sustainable agriculture. And in winemaking, nanomaterials and nanodevices can be used to control the growth of spoilage microorganisms and to reduce or remove undesirable compounds, such as ethyl phenols (4-ethylphenol and 4-ethylguaiacol), biogenic amines, and tartaric acid, and so on, as well as to facilitate some technological processes (i.e. in wine filtration to eliminate microorganisms). This review summarizes recent studies with applications of nanotechnology in viticulture in order to facilitate agronomic management and optimize grape production and in enology to improve wine quality and safety. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | - Bianca Souza-da Costa
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | - Pilar Rubio-Bretón
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | - Eva P Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
6
|
Impacts of Magnetic Immobilization on the Growth and Metabolic Status of Recombinant Pichia pastoris. Mol Biotechnol 2021; 64:320-329. [PMID: 34647242 DOI: 10.1007/s12033-021-00420-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Downstream processing is an expensive step for industrial production of recombinant proteins. Cell immobilization is known as one of the ideal solutions in regard to process intensification. In recent years, magnetic immobilization was introduced as a new technique for cell immobilization. This technique was successfully employed to harvest many bacterial and eukaryotic cells. But there are no data about the influence of magnetic immobilization on the eukaryotic inducted recombinant cells. In this study, impacts of magnetic immobilization on the growth and metabolic status of induced recombinant Pichia pastoris as a valuable eukaryotic model cells were investigated. Results based on colony-forming unit, OD600, and trypan blue assay indicated that magnetic immobilization had no adverse effect on the growth and viability of P. pastoris cells. Also, about 20-40% increase in metabolic activity was recorded in immobilized cells that were decorated with 0.5-2 mg/mL nanoparticles. Total protein and carbohydrate of the cells were also measured as main indicatives for cell function and no significant changes were observed in the immobilized cells. Current data show magnetic immobilization as a biocompatible technique for application in eukaryotic expression systems. Results can be considered for further developments in P. pastoris-based expression systems.
Collapse
|
7
|
Firoozi FR, Raee MJ, Lal N, Ebrahiminezhad A, Teshnizi SH, Berenjian A, Ghasemi Y. Application of magnetic immboilization for ethanol biosynthesis using Saccharomyces cerevisiae. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1939376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Farid Reza Firoozi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Centre for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neha Lal
- School of Engineering, Faculty of Science and Engineering, University of Waikato, Hamilton New Zealand
| | | | - Saeed Hosseini Teshnizi
- Department of Biostatistics, Paramedical School, Hormozgan University of Medical Sciences, Bandar-abbas, Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, University of Waikato, Hamilton New Zealand
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Fulaz S, Scachetti C, Tasic L. Enzyme-functionalised, core/shell magnetic nanoparticles for selective pH-triggered sucrose capture. RSC Adv 2021; 11:4701-4712. [PMID: 35424388 PMCID: PMC8694497 DOI: 10.1039/d0ra09259b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetes is a chronic metabolic disease which leads to high glucose levels in the blood, with severe consequences for human health. Due to the worldwide appeal for the reduction in calorie intake, this study presents the development of a nanomaterial able to capture sucrose selectively, thus providing a tool to remove naturally occurring sucrose from food, such as fruit juices, producing low-calorie juices for consumption. Magnetite nanoparticles (Fe3O4 NPs) coated with an inert material (SiO2) and functionalised with the enzyme invertase were designed to remove sucrose from solutions. Fe3O4 NPs were synthesised using the co-precipitation method, whereas the coating with a silica shell was done by the Stöber method. Its physicochemical characteristics were determined, with excellent stability over time. On the other hand, the invertase enzyme was extracted from dry Baker's yeast, purified and immobilised on the surface of the silica-coated Fe3O4 NPs. pH-triggered sucrose capture occurred at pH 3.0 once invertase with protonated catalytic residues was able just to bind with sucrose in a highly selective way. After a short, 1 min interaction, approximately 13.5 mmol L-1 of sucrose was captured per gram of nanomaterial and removed with the use of an external permanent magnet. The complex sucrose/nanomaterial was washed, and the released sucrose was put into buffered solution (pH = 4.8), where it underwent hydrolysis to yield inverted sugar. On the other side, sucrose-free nanomaterial was reused with no loss of enzymatic capability to capture sucrose at pH = 3.0 and maintained the invertase activity at pH 4.8 in ten consecutive rounds of re-use. As sucrose was recovered in the form of inverted sugar, not just low sugar beverage could be obtained, but also a high valued market product. Thus, the developed technology allows for the commercialisation of low-calorie food, offering healthier options to consumers and helping to fight diabetes and obesity.
Collapse
Affiliation(s)
- Stephanie Fulaz
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas Campinas 13083-970 Brazil
| | - Carolina Scachetti
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas Campinas 13083-970 Brazil
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas Campinas 13083-970 Brazil
| |
Collapse
|
9
|
Impacts of Magnetic Immobilization on the Recombinant Proteins Structure Produced in Pichia pastoris System. Mol Biotechnol 2020; 63:80-89. [PMID: 33165735 DOI: 10.1007/s12033-020-00286-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Pichia pastoris expression system was introduced with post-translation process similar to higher eukaryotes. Preliminary studies were performed toward process intensification and magnetic immobilization of this system. In this experiment, effects of magnetic immobilization on the structure of recombinant protein were evaluated. P. pastoris cell which express human serum albumin (HSA) was used as a model. The cells were immobilized with various concentrations of APTES coated magnetite nanoparticles. HSA production was done over 5 days induction and structure of the product was analyzed by UV-vis, fluorescence, and ATR-FTIR spectroscopy. Second derivative deconvolution method was used to analyze the secondary structure of HSA. P. pastoris cell that were immobilized with 0.5 and 1 mg/mL of nanoparticles were produced HSA with intact structure. But immobilization with 2 mg/mL of nanoparticles resulted in some modifications in the secondary structures (i.e., α-helixes and β-turns) of produced HSA. Based on these data, immobilization of P. pastoris cells with 0.5 or 1 mg/mL of nanoparticles is completely efficient for cell harvesting and has any effect on the structure of recombinant product. These findings revealed that decoration of microbial cells with high concentrations of nanoparticles has some impacts on the structure of secretory proteins.
Collapse
|
10
|
Eradication of Saccharomyces cerevisiae by Pulsed Electric Field Treatments. Microorganisms 2020; 8:microorganisms8111684. [PMID: 33138324 PMCID: PMC7692574 DOI: 10.3390/microorganisms8111684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022] Open
Abstract
One of the promising technologies that can inactivate microorganisms without heat is pulsed electric field (PEF) treatment. The aim of this study was to examine the influence of PEF treatment (2.9 kV cm−1, 100 Hz, 5000 pulses in trains mode of 500 pulses with a pulse duration of 10 µs) on Saccharomyces cerevisiae eradication and resealing in different conditions, such as current density (which is influenced by the medium conductivity), the sort of medium (phosphate buffered saline (PBS) vs. yeast malt broth (YMB) and a combined treatment of PEF with the addition of preservatives. When the S. cerevisiae were suspended in PBS, increasing the current density from 0.02 to 3.3 A cm−2 (corresponding to a total specific energy of 22.04 to 614.59 kJ kg−1) led to an increase of S. cerevisiae eradication. At 3.3 A cm−2, a total S. cerevisiae eradication was observed. However, when the S. cerevisiae in PBS was treated with the highest current density of 3.3 A cm−2, followed by dilution in a rich YMB medium, a phenomenon of cell membrane resealing was observed by flow cytometry (FCM) and CFU analysis. The viability of S. cerevisiae was also examined when the culture was exposed to repeating PEF treatments (up to four cycles) with and without the addition of preservatives. This experiment was performed when the S. cerevisiae were suspended in YMB containing tartaric acid (pH 3.4) and ethanol to a final concentration of 10% (v/v), which mimics wine. It was shown that one PEF treatment cycle led to a reduction of 1.35 log10, compared to 2.24 log10 when four cycles were applied. However, no synergic effect was observed when the preservatives, free SO2, and sorbic acid were added. This study shows the important and necessary knowledge about yeast eradication and membrane recovery processes after PEF treatment, in particular for application in the liquid food industry.
Collapse
|
11
|
Taghizadeh SM, Berenjian A, Chew KW, Show PL, Mohd Zaid HF, Ramezani H, Ghasemi Y, Raee MJ, Ebrahiminezhad A. Impact of magnetic immobilization on the cell physiology of green unicellular algae Chlorella vulgaris. Bioengineered 2020; 11:141-153. [PMID: 31994978 PMCID: PMC6999624 DOI: 10.1080/21655979.2020.1718477] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cell immobilization on the magnetic nanoparticles (MNPs) and magnetic harvesting is a novel approach for microalgal cells separation. To date, the effect of these nanoparticles on microalgal cells was only studied over a short period of time. More studies are hence needed for a better understanding of the magnetic harvesting proposes or environmental concerns relating to long-term exposure to nanoparticles. In this study, the impact of various concentrations of MNPs on the microalgal cells growth and their metabolic status was investigated over 12 days. More than 60% reduction in mitochondrial activity and pigments (chlorophyll a, chlorophyll b, and carotenoids) content occurred during the first 6 days of exposure to ≥50 µg/mL nanoparticles. However, more than 50% growth inhibitory effect was seen at concentrations higher than 400 µg/mL. Exposure to MNPs gradually induced cellular adaptation and after about 6 days of exposure to stress generating concentrations (˂400 µg/mL) of IONs, microalgae could overcome the imposed damages. This work provides a better understanding regarding the environmental impact of MNPs and appropriate concentrations of these particles for future algal cells magnetic immobilization and harvesting.
Collapse
Affiliation(s)
- Seyedeh-Masoumeh Taghizadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Kit Wayne Chew
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Hayyiratul Fatimah Mohd Zaid
- Fundamental and Applied Sciences Department, Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Hamidreza Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ebrahiminezhad
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Abstract
Among all minerals, iron is one of the elements identified early by human beings to take advantage of and be used. The role of iron in human life is so great that it made an era in the ages of humanity. Pure iron has a shiny grayish-silver color, but after combining with oxygen and water it can make a colorful set of materials with divergent properties. This diversity sometimes appears ambiguous but provides variety of applications. In fact, iron can come in different forms: zero-valent iron (pure iron), iron oxides, iron hydroxides, and iron oxide hydroxides. By taking these divergent materials into the nano realm, new properties are exhibited, providing us with even more applications. This review deals with iron as a magic element in the nano realm and provides comprehensive data about its structure, properties, synthesis techniques, and applications of various forms of iron-based nanostructures in the science, medicine, and technology sectors.
Collapse
|
13
|
Loira I, Morata A, Escott C, Del Fresno JM, Tesfaye W, Palomero F, Suárez-Lepe JA. Applications of nanotechnology in the winemaking process. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03519-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Taghizadeh SM, Ebrahiminezhad A, Ghoshoon MB, Dehshahri A, Berenjian A, Ghasemi Y. Magnetic Immobilization of Pichia pastoris Cells for the Production of Recombinant Human Serum Albumin. NANOMATERIALS 2020; 10:nano10010111. [PMID: 31935937 PMCID: PMC7022243 DOI: 10.3390/nano10010111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022]
Abstract
Magnetic immobilization as a novel technique was used to immobilize recombinant Pichia pastoris (GS115 Albumin) cells to produce human serum albumin (HSA). In this regard, magnetic nanoparticles (MNPs) coated with amino propyl triethoxy silane (APTES) were synthesized. P. pastoris cells were decorated with MNPs via nonspecific interactions. Decorated cells were magneto-responsible and easily harvested by applying an external magnetic field. The efficiency of magnetic immobilization (Ei) for cell removal was in direct relation with the MNP concentration and time of exposure to the magnetic field. By increasing the nanoparticles concentration, cells were harvested in a shorter period. Complete cell removal (Ei ≈ 100) was achieved in ≥0.5 mg/mL of MNPs in just 30 s. HSA is produced in an extremely high cell density (OD ~20) and it is the first time that magnetic immobilization was successfully employed for harvesting such a thick cell suspension. After 5 days of induction the cells, which were immobilized with 0.25 to 1 mg/mL of nanoparticles, showed an increased potency for recombinant HSA production. The largest increase in HSA production (38.1%) was achieved in the cells that were immobilized with 0.5 mg/mL of nanoparticles. These results can be considered as a novel approach for further developments in the P. pastoris-based system.
Collapse
Affiliation(s)
- Seyedeh-Masoumeh Taghizadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; (S.-M.T.); (M.B.G.); (A.D.)
| | - Alireza Ebrahiminezhad
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Mohammad Bagher Ghoshoon
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; (S.-M.T.); (M.B.G.); (A.D.)
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; (S.-M.T.); (M.B.G.); (A.D.)
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, the University of Waikato, Hamilton 3240, New Zealand
- Correspondence: (A.B.); (Y.G.)
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; (S.-M.T.); (M.B.G.); (A.D.)
- Correspondence: (A.B.); (Y.G.)
| |
Collapse
|
15
|
Hosnedlova B, Sochor J, Baron M, Bjørklund G, Kizek R. Application of nanotechnology based-biosensors in analysis of wine compounds and control of wine quality and safety: A critical review. Crit Rev Food Sci Nutr 2019; 60:3271-3289. [PMID: 31809581 DOI: 10.1080/10408398.2019.1682965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanotechnology is one of the most promising future technologies for the food industry. Some of its applications have already been introduced in analytical techniques and food packaging technologies. This review summarizes existing knowledge about the implementation of nanotechnology in wine laboratory procedures. The focus is mainly on recent advancements in the design and development of nanomaterial-based sensors for wine compounds analysis and assessing wine safety. Nanotechnological approaches could be useful in the wine production process, to simplify wine analysis methods, and to improve the quality and safety of the final product.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic.,CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Jiri Sochor
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Mojmir Baron
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Rene Kizek
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic.,Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
16
|
Schwaminger SP, Fraga-García P, Eigenfeld M, Becker TM, Berensmeier S. Magnetic Separation in Bioprocessing Beyond the Analytical Scale: From Biotechnology to the Food Industry. Front Bioeng Biotechnol 2019; 7:233. [PMID: 31612129 PMCID: PMC6776625 DOI: 10.3389/fbioe.2019.00233] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/09/2019] [Indexed: 12/25/2022] Open
Abstract
Downstream processing needs more innovative ideas to advance and overcome current bioprocessing challenges. Chromatography is by far the most prevalent technique used by a conservative industrial sector. Chromatography has many advantages but also often represents the most expensive step in a pharmaceutical production process. Therefore, alternative methods as well as further processing strategies are urgently needed. One promising candidate for new developments on a large scale is magnetic separation, which enables the fast and direct capture of target molecules in fermentation broths. There has been a small revolution in this area in the last 10–20 years and a few papers dealing with the use of magnetic separation in bioprocessing examples beyond the analytical scale have been published. Since each target material is purified with a different magnetic separation approach, the comparison of processes is not trivial but would help to understand and improve magnetic separation and thus making it attractive for the technical scale. To address this issue, we report on the latest achievements in magnetic separation technology and offer an overview of the progress of the capture and separation of biomolecules derived from biotechnology and food technology. Magnetic separation has great potential for high-throughput downstream processing in applied life sciences. At the same time, two major challenges need to be overcome: (1) the development of a platform for suitable and flexible separation devices and (2) additional investigations of advantageous processing conditions, especially during recovery. Concentration and purification factors need to be improved to pave the way for the broader use of magnetic applications. The innovative combination of magnetic gradients and multipurpose separations will set new magnetic-based trends for large scale downstream processing.
Collapse
Affiliation(s)
- Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - Marco Eigenfeld
- Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | - Thomas M Becker
- Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
17
|
Kemp B, Condé B, Jégou S, Howell K, Vasserot Y, Marchal R. Chemical compounds and mechanisms involved in the formation and stabilization of foam in sparkling wines. Crit Rev Food Sci Nutr 2018; 59:2072-2094. [PMID: 29420057 DOI: 10.1080/10408398.2018.1437535] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The visual properties of sparkling wine including foam and bubbles are an indicator of sparkling wine quality. Foam properties, particularly foam height (FH) and foam stability (TS), are significantly influenced by the chemical composition of the wine. This review investigates our current knowledge of specific chemical compounds and, the mechanisms by which they influence the foam properties of sparkling wines. Grape and yeast proteins, amino acids, polysaccharides, phenolic compounds, organic acids, fatty acids, ethanol and sugar are examined with respect to their contribution to foam characteristics in sparkling wines made with the Traditional, Transfer, and Charmat and carbonation methods. Contradictory results have been identified that appear to be due to the analytical methods used to measure and quantify compounds and foam. Biopolymer complexes are discussed and absent knowledge with regards to thaumatin-like proteins (TLPs), polysaccharides, amino acids, oak-derived phenolic compounds and organic acids are identified. Future research is also likely to concentrate on visual analysis of sparkling wines by in-depth imaging analysis and specific sensory analysis techniques.
Collapse
Affiliation(s)
- Belinda Kemp
- a Cool Climate Oenology and Viticulture Institute (CCOVI), Brock University , Sir Isaac Brock Way, St Catharines , Ontario , Canada.,b Adjunct Professor, Department of Biological Sciences, Faculty of Mathematics and Science , Brock University , Sir Isaac Brock Way, St. Catharines , Ontario , Canada
| | - Bruna Condé
- c Faculty of Veterinary and Agricultural Sciences , University of Melbourne , Victoria , Australia
| | - Sandrine Jégou
- d Laboratoire d'Oenologie de Chimie Appliquée , Unité de Recherche Vigne et Vins de Champagne (URVVC)-EA 4707 , Moulin de la Housse, Reims Cédex, France
| | - Kate Howell
- c Faculty of Veterinary and Agricultural Sciences , University of Melbourne , Victoria , Australia
| | - Yann Vasserot
- d Laboratoire d'Oenologie de Chimie Appliquée , Unité de Recherche Vigne et Vins de Champagne (URVVC)-EA 4707 , Moulin de la Housse, Reims Cédex, France
| | - Richard Marchal
- d Laboratoire d'Oenologie de Chimie Appliquée , Unité de Recherche Vigne et Vins de Champagne (URVVC)-EA 4707 , Moulin de la Housse, Reims Cédex, France
| |
Collapse
|
18
|
A novel technology for the rapid, selective, magnetic removal of pathogenesis-related proteins from wines. Food Chem 2017; 232:508-514. [DOI: 10.1016/j.foodchem.2017.04.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 11/16/2022]
|
19
|
Application of magneto‐responsive Oenococcus oeni for the malolactic fermentation in wine. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
The influence of a ferrofluid in the presence of an external rotating magnetic field on the growth rate and cell metabolic activity of a wine yeast strain. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
García-Ruiz A, Crespo J, López-de-Luzuriaga J, Olmos M, Monge M, Rodríguez-Álfaro M, Martín-Álvarez P, Bartolome B, Moreno-Arribas M. Novel biocompatible silver nanoparticles for controlling the growth of lactic acid bacteria and acetic acid bacteria in wines. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.09.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Kemp B, Alexandre H, Robillard B, Marchal R. Effect of production phase on bottle-fermented sparkling wine quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:19-38. [PMID: 25494838 DOI: 10.1021/jf504268u] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This review analyzes bottle-fermented sparkling wine research at each stage of production by evaluating existing knowledge to identify areas that require future investigation. With the growing importance of enological investigation being focused on the needs of the wine production industry, this review examines current research at each stage of bottle-fermented sparkling wine production. Production phases analyzed in this review include pressing, juice adjustments, malolactic fermentation (MLF), stabilization, clarification, tirage, lees aging, disgorging, and dosage. The aim of this review is to identify enological factors that affect bottle-fermented sparkling wine quality, predominantly aroma, flavor, and foaming quality. Future research topics identified include regional specific varieties, plant-based products from vines, grapes, and yeast that can be used in sparkling wine production, gushing at disgorging, and methods to increase the rate of yeast autolysis. An internationally accepted sensory analysis method specifically designed for sparkling wine is required.
Collapse
|
23
|
Controlled heteroaggregation of two types of nanoparticles in an aqueous suspension. J Colloid Interface Sci 2015; 438:235-243. [DOI: 10.1016/j.jcis.2014.09.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 01/13/2023]
|