1
|
Ren J, Barton CD, Zhan J. Engineered production of bioactive polyphenolic O-glycosides. Biotechnol Adv 2023; 65:108146. [PMID: 37028465 DOI: 10.1016/j.biotechadv.2023.108146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Polyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds. Therefore, polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals. Engineered biosynthesis provides an environmentally friendly and cost-effective approach to generate polyphenolic glycosides through the use of various glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar moieties from nucleotide-activated diphosphate sugar (NDP-sugar) donors to sugar acceptors such as polyphenolic compounds. In this review, we systematically review and summarize the representative polyphenolic O-glycosides with various bioactivities and their engineered biosynthesis in microbes with different biotechnological strategies. We also review the major routes towards NDP-sugar formation in microbes, which is significant for producing unusual or novel glycosides. Finally, we discuss the trends in NDP-sugar based glycosylation research to promote the development of prodrugs that positively impact human health and wellness.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.
| |
Collapse
|
2
|
Mrudulakumari Vasudevan U, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41:107550. [PMID: 32360984 DOI: 10.1016/j.biotechadv.2020.107550] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, terpenoids, and polyketides are structurally diverse secondary metabolites used widely as pharmaceuticals and nutraceuticals. Most of these molecules exist in nature as glycosides, in which sugar residues act as a decisive factor in their architectural complexity and bioactivity. Engineering glycosylation through selective trimming or extension of the sugar residues in these molecules is a prerequisite to their commercial production as well to creating novel derivatives with specialized functions. Traditional chemical glycosylation methods are tedious and can offer only limited end-product diversity. New in vitro and in vivo biocatalytic tools have emerged as outstanding platforms for engineering glycosylation in these three classes of secondary metabolites to create a large repertoire of versatile glycoprofiles. As knowledge has increased about secondary metabolite-associated promiscuous glycosyltransferases and sugar biosynthetic machinery, along with phenomenal progress in combinatorial biosynthesis, reliable industrial production of unnatural secondary metabolites has gained momentum in recent years. This review highlights the significant role of sugar residues in naturally occurring flavonoids, terpenoids, and polyketide antibiotics. General biocatalytic tools used to alter the identity and pattern of sugar molecules are described, followed by a detailed illustration of diverse strategies used in the past decade to engineer glycosylation of these valuable metabolites, exemplified with commercialized products and patents. By addressing the challenges involved in current bio catalytic methods and considering the perspectives portrayed in this review, exceptional drugs, flavors, and aromas from these small molecules could come to dominate the natural-product industry.
Collapse
Affiliation(s)
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
3
|
Nguyen TTH, Shin HJ, Pandey RP, Jung HJ, Liou K, Sohng JK. Biosynthesis of Rhamnosylated Anthraquinones in Escherichia coli. J Microbiol Biotechnol 2020; 30:398-403. [PMID: 31893599 PMCID: PMC9728250 DOI: 10.4014/jmb.1911.11047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rhamnose is a naturally occurring deoxysugar present as a glycogenic component of plant and microbial natural products. A recombinant mutant Escherichia coli strain was developed by overexpressing genes involved in the TDP-L-rhamnose biosynthesis pathway of different bacterial strains and Saccharothrix espanaensis rhamnosyl transferase to conjugate intrinsic cytosolic TDP-L-rhamnose with anthraquinones supplemented exogenously. Among the five anthraquinones (alizarin, emodin, chrysazin, anthrarufin, and quinizarin) tested, quinizarin was biotransformed into a rhamoside derivative with the highest conversion ratio by whole cells of engineered E. coli. The quinizarin glycoside was identified by various chromatographic and spectroscopic analyses. The anti-proliferative property of the newly synthesized rhamnoside, quinizarin-4-O-α-L-rhamnoside, was assayed in various cancer cells.
Collapse
Affiliation(s)
- Trang Thi Huyen Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea
| | - Hee Jeong Shin
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| | - Kwangkyoung Liou
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea,Corresponding author Phone: +82-41-530-2246 Fax: +82-41-544-2919 E-mail:
| |
Collapse
|
4
|
Ruprecht C, Bönisch F, Ilmberger N, Heyer TV, Haupt ET, Streit WR, Rabausch U. High level production of flavonoid rhamnosides by metagenome-derived Glycosyltransferase C in Escherichia coli utilizing dextrins of starch as a single carbon source. Metab Eng 2019; 55:212-219. [DOI: 10.1016/j.ymben.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/14/2019] [Accepted: 07/07/2019] [Indexed: 01/09/2023]
|
5
|
Thapa SB, Pandey RP, Bashyal P, Yamaguchi T, Sohng JK. Cascade biocatalysis systems for bioactive naringenin glucosides and quercetin rhamnoside production from sucrose. Appl Microbiol Biotechnol 2019; 103:7953-7969. [DOI: 10.1007/s00253-019-10060-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
|
6
|
Metabolic engineering of glycosylated polyketide biosynthesis. Emerg Top Life Sci 2018; 2:389-403. [DOI: 10.1042/etls20180011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022]
Abstract
Microbial cell factories are extensively used for the biosynthesis of value-added chemicals, biopharmaceuticals, and biofuels. Microbial biosynthesis is also realistic for the production of heterologous molecules including complex natural products of plant and microbial origin. Glycosylation is a well-known post-modification method to engineer sugar-functionalized natural products. It is of particular interest to chemical biologists to increase chemical diversity of molecules. Employing the state-of-the-art systems and synthetic biology tools, a range of small to complex glycosylated natural products have been produced from microbes using a simple and sustainable fermentation approach. In this context, this review covers recent notable metabolic engineering approaches used for the biosynthesis of glycosylated plant and microbial polyketides in different microorganisms. This review article is broadly divided into two major parts. The first part is focused on the biosynthesis of glycosylated plant polyketides in prokaryotes and yeast cells, while the second part is focused on the generation of glycosylated microbial polyketides in actinomycetes.
Collapse
|
7
|
Chen D, Chen R, Xie K, Duan Y, Dai J. Production of acetophenone C-glucosides using an engineered C-glycosyltransferase in Escherichia coli. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Chen D, Chen R, Xie K, Yue T, Zhang X, Ye F, Dai J. Biocatalytic C-Glucosylation of Coumarins Using an Engineered C-Glycosyltransferase. Org Lett 2018; 20:1634-1637. [PMID: 29470079 DOI: 10.1021/acs.orglett.8b00378] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymatic synthesis of coumarin C-glucosides by an engineered C-glycosyltransferase, MiCGTb-GAGM, was explored in vitro and in vivo. MiCGTb-GAGM exhibited a robust C-glucosylation capability toward structurally diverse coumarin derivatives. The whole-cell bioconversion of MiCGTb-GAGM was exploited for large-scale production of coumarin C-glucosides. Two C-glucosides exhibited potent SGLT2 inhibitory activities with IC50 values at 10-6 M. These findings provide cost-effective and practical synthetic strategies to generate structurally diverse and novel bioactive coumarin C-glycosides for drug discovery.
Collapse
Affiliation(s)
- Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Tian Yue
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Xiaolin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Fei Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
9
|
Pandey RP. Diversifying Natural Products with Promiscuous Glycosyltransferase Enzymes via a Sustainable Microbial Fermentation Approach. Front Chem 2017; 5:110. [PMID: 29255706 PMCID: PMC5722797 DOI: 10.3389/fchem.2017.00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/20/2017] [Indexed: 12/02/2022] Open
Affiliation(s)
- Ramesh P Pandey
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan, South Korea.,Department of Life Science and Biochemical Engineering, Sun Moon University, Asan, South Korea
| |
Collapse
|
10
|
Pandey RP, Sohng JK. Glycosyltransferase-Mediated Exchange of Rare Microbial Sugars with Natural Products. Front Microbiol 2016; 7:1849. [PMID: 27899922 PMCID: PMC5110563 DOI: 10.3389/fmicb.2016.01849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ramesh P Pandey
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon UniversityAsan-si, South Korea; Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Jae K Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon UniversityAsan-si, South Korea; Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| |
Collapse
|
11
|
Pandey RP, Parajuli P, Chu LL, Kim SY, Sohng JK. Biosynthesis of a novel fisetin glycoside from engineered Escherichia coli. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.07.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Pandey RP, Parajuli P, Koffas MA, Sohng JK. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 2016; 34:634-662. [DOI: 10.1016/j.biotechadv.2016.02.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/18/2022]
|
13
|
Pandey RP, Parajuli P, Gurung RB, Sohng JK. Donor specificity of YjiC glycosyltransferase determines the conjugation of cytosolic NDP-sugar in in vivo glycosylation reactions. Enzyme Microb Technol 2016; 91:26-33. [PMID: 27444326 DOI: 10.1016/j.enzmictec.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/05/2016] [Accepted: 05/20/2016] [Indexed: 12/13/2022]
Abstract
Escherichia coli BL21 (DE3) was engineered by blocking glucose-1-phosphate utilizing glucose phosphate isomerase (pgi), glucose-6-phosphate dehydrogenase (zwf) and uridylyltransferase (galU) genes to produce pool of four different rare dTDP-sugars. The cytosolic pool of dTDP-l-rhamnose, dTDP-d-viosamine, dTDP-4-amino 4,6-dideoxy-d-galactose, and dTDP-3-amino 3,6-dideoxy-d-galactose was generated by overexpressing respective dTDP-sugars biosynthesis genes from various microbial sources. A flexible glycosyltransferase YjiC, from Bacillus licheniformis DSM 13 was also overexpressed to transfer sugar moieties to 3-hydroxyl group of 3-hydroxyflavone, a core unit of flavonoids. Among four rare dTDP-sugars generated in cytosol of engineered strains, YjiC solely transferred l-rhamnose from dTDP-l-rhamnose and tuned to rhamnosyltransferase.
Collapse
Affiliation(s)
- Ramesh Prasad Pandey
- Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Republic of Korea
| | - Prakash Parajuli
- Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Republic of Korea
| | - Rit Bahadur Gurung
- Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Republic of Korea
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Republic of Korea.
| |
Collapse
|
14
|
Shin JY, Pandey RP, Jung HY, Chu LL, Park YI, Sohng JK. In vitro single-vessel enzymatic synthesis of novel Resvera-A glucosides. Carbohydr Res 2016; 424:8-14. [DOI: 10.1016/j.carres.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/31/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
15
|
Recent developments in the enzymatic O-glycosylation of flavonoids. Appl Microbiol Biotechnol 2016; 100:4269-81. [PMID: 27029191 DOI: 10.1007/s00253-016-7465-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 01/04/2023]
Abstract
The glycosylation of bioactive compounds, such as flavonoids, is of particular relevance, as it modulates many of their pharmacokinetic parameters. This article reviews the literature between 2010 and the end of 2015 that deals with the enzymatic O-glycosylation of this class of compounds. Enzymes of glycosyltransferase family 1 remain the biocatalysts of choice for glycodiversification of flavonoids, in spite of relatively low yields. Transfers of 14 different sugars, in addition to glucose, were reported. Several Escherichia coli strains were metabolically engineered to enable a (more efficient) synthesis of the required donor during in vivo glycosylations. For the transfer of glucose, enzymes of glycoside hydrolase families 13 and 70 were successfully assayed with several flavonoids. The number of acceptor substrates and of regiospecificities characterized so far is smaller than for glycosyltransferases. However, their glycosyl donors are much cheaper and yields are considerably higher. A few success stories of enzyme engineering were reported. These improved the catalytic efficiency as well as donor, acceptor, or product ranges. Currently, the development of appropriate high-throughput screening systems appears to be the major bottleneck for this powerful technology.
Collapse
|
16
|
Expanded acceptor substrates flexibility study of flavonol 7- O -rhamnosyltransferase, AtUGT89C1 from Arabidopsis thaliana. Carbohydr Res 2015; 418:13-19. [DOI: 10.1016/j.carres.2015.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 01/24/2023]
|