1
|
Shariatzadeh M, Chandra A, Wilson SL, McCall MJ, Morizur L, Lesueur L, Chose O, Gepp MM, Schulz A, Neubauer JC, Zimmermann H, Abranches E, Man J, O’Shea O, Stacey G, Hewitt Z, Williams DJ. Distributed automated manufacturing of pluripotent stem cell products. THE INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY 2020; 106:1085-1103. [PMID: 31983799 PMCID: PMC6954896 DOI: 10.1007/s00170-019-04516-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/27/2019] [Indexed: 05/04/2023]
Abstract
Establishing how to effectively manufacture cell therapies is an industry-level problem. Decentralised manufacturing is of increasing importance, and its challenges are recognised by healthcare regulators with deviations and comparability issues receiving specific attention from them. This paper is the first to report the deviations and other risks encountered when implementing the expansion of human pluripotent stem cells (hPSCs) in an automated three international site-decentralised manufacturing setting. An experimental demonstrator project expanded a human embryonal carcinoma cell line (2102Ep) at three development sites in France, Germany and the UK using the CompacT SelecT (Sartorius Stedim, Royston, UK) automated cell culture platform. Anticipated variations between sites spanned material input, features of the process itself and production system details including different quality management systems and personnel. Where possible, these were pre-addressed by implementing strategies including standardisation, cell bank mycoplasma testing and specific engineering and process improvements. However, despite such measures, unexpected deviations occurred between sites including software incompatibility and machine/process errors together with uncharacteristic contaminations. Many only became apparent during process proving or during the process run. Further, parameters including growth rate and viability discrepancies could only be determined post-run, preventing 'live' corrective measures. The work confirms the critical nature of approaches usually taken in Good Manufacturing Practice (GMP) manufacturing settings and especially emphasises the requirement for monitoring steps to be included within the production system. Real-time process monitoring coupled with carefully structured quality systems is essential for multiple site working including clarity of decision-making roles. Additionally, an over-reliance upon post-process visual microscopic comparisons has major limitations; it is difficult for non-experts to detect deleterious culture changes and such detection is slow.
Collapse
Affiliation(s)
- Maryam Shariatzadeh
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| | - Amit Chandra
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
- Present Address: Yposkesi, 26, rue Henri Auguste-Desbruères, 91100 Corbeil-Essonnes, France
| | - Samantha L Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| | - Mark J McCall
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| | - Lise Morizur
- CECS/I-STEM, 28, rue Henri Auguste-Desbruères, 91100 Corbeil-Essonnes, France
| | - Léa Lesueur
- CECS/I-STEM, 28, rue Henri Auguste-Desbruères, 91100 Corbeil-Essonnes, France
| | - Olivier Chose
- CECS/I-STEM, 28, rue Henri Auguste-Desbruères, 91100 Corbeil-Essonnes, France
| | - Michael M. Gepp
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, 97082 Würzburg, Germany
| | - André Schulz
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Present Address: Knappschaft Eye Clinic Sulzbach, An der Klinik 10, 66280 Sulzbach, Germany
| | - Julia C. Neubauer
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, 97082 Würzburg, Germany
| | - Heiko Zimmermann
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, 97082 Würzburg, Germany
- Saarland University, 66123 Saarbruecken, Germany
- Universidad Católica del Norte, Coquimbo, Chile
| | - Elsa Abranches
- NISBC, Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Jennifer Man
- NISBC, Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
- Present Address: Oxfordshire, UK
| | - Orla O’Shea
- NISBC, Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Glyn Stacey
- NISBC, Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
- Present Address: Adaptimmune, 60 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire OX14 4RX UK
| | - Zoe Hewitt
- Centre for Stem Cell Biology (CSCB), University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - David J Williams
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| |
Collapse
|
3
|
Archibald PRT, Chandra A, Thomas D, Chose O, Massouridès E, Laâbi Y, Williams DJ. Comparability of automated human induced pluripotent stem cell culture: a pilot study. Bioprocess Biosyst Eng 2016; 39:1847-1858. [PMID: 27503483 PMCID: PMC5050253 DOI: 10.1007/s00449-016-1659-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/29/2016] [Indexed: 11/27/2022]
Abstract
Consistent and robust manufacturing is essential for the translation of cell therapies, and the utilisation automation throughout the manufacturing process may allow for improvements in quality control, scalability, reproducibility and economics of the process. The aim of this study was to measure and establish the comparability between alternative process steps for the culture of hiPSCs. Consequently, the effects of manual centrifugation and automated non-centrifugation process steps, performed using TAP Biosystems’ CompacT SelecT automated cell culture platform, upon the culture of a human induced pluripotent stem cell (hiPSC) line (VAX001024c07) were compared. This study, has demonstrated that comparable morphologies and cell diameters were observed in hiPSCs cultured using either manual or automated process steps. However, non-centrifugation hiPSC populations exhibited greater cell yields, greater aggregate rates, increased pluripotency marker expression, and decreased differentiation marker expression compared to centrifugation hiPSCs. A trend for decreased variability in cell yield was also observed after the utilisation of the automated process step. This study also highlights the detrimental effect of the cryopreservation and thawing processes upon the growth and characteristics of hiPSC cultures, and demonstrates that automated hiPSC manufacturing protocols can be successfully transferred between independent laboratories.
Collapse
Affiliation(s)
- Peter R T Archibald
- Centre for Biological Engineering, Loughborough University, Loughborough, LE11 3TU, UK.,Cell and Gene Therapy Platform CMC, GlaxoSmithKline PLC, Stevenage, UK
| | - Amit Chandra
- Centre for Biological Engineering, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Dave Thomas
- TAP Biosystems, Part of the Sartorius Stedim Biotech Group, Royston, UK
| | - Olivier Chose
- CECS/I-Stem, AFM Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 2 rue Henri Desbruères, 91100, Corbeil-Essonnes, France
| | - Emmanuelle Massouridès
- CECS/I-Stem, AFM Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 2 rue Henri Desbruères, 91100, Corbeil-Essonnes, France
| | - Yacine Laâbi
- CECS/I-Stem, AFM Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 2 rue Henri Desbruères, 91100, Corbeil-Essonnes, France
| | - David J Williams
- Centre for Biological Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|