Chen M, Xu L, Zhou Y, Zhang Y, Lang M, Ye Z, Tan WS. Poly(ε-caprolactone)-based substrates bearing pendant small chemical groups as a platform for systemic investigation of chondrogenesis.
Cell Prolif 2016;
49:512-22. [PMID:
27364032 DOI:
10.1111/cpr.12272]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES
Physiochemical properties of biomaterials play critical roles in dictating types of cell behaviour. In this study, a series of poly(ε-caprolactone) (PCL)-derived polymers bearing different small chemical groups was employed as a platform to evaluate chondrogenesis of different cell types.
MATERIALS AND METHODS
Thin films were prepared by spin-coating PCL derivatives. Rabbit articular chondrocytes (rACs) and rabbit bone marrow-derived mesenchymal stem cells (rMSCs) were seeded on to the films, and cell adhesion, proliferation, extracellular matrix production and gene expression were evaluated.
RESULTS
The presence of hydrophilic groups (-NH2 , -COOH, -OH and -C=O) promoted adhesion and proliferation of primary rACs and rMSCs. On these polymeric films, chondrogenesis of primary rACs depended on culture time. For passaged cells, re-differentiation was induced on these films by chondrogenic induction, but less for cells of passage 5 compared to passage 3. While films with hydrophilic groups favoured chondrocytic gene expression of both types of passaged cells, production of glycosaminoglycans (GAG) was similar for those of passage 3 on all films, and PCL-CH3 film better supported GAG production for cells of passage 5. Under chondrogenic conditions, rMSCs were more efficient at GAG production on PCL and PCL-NH2 films.
CONCLUSIONS
This study demonstrates that different cells displayed distinct responses to substrate surface chemistry, implying that cell-biomaterial interactions can be developmental stage dependent. This provides a novel perspective for developing biomaterials for cartilage regeneration.
Collapse