1
|
Li X, Lu X, Zhang L, Cai Z, Tang D, Lai W. A papain-based colorimetric catalytic sensing system for immunoassay detection of carcinoembryonic antigen. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124269. [PMID: 38608561 DOI: 10.1016/j.saa.2024.124269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
A colorimetric immunoassay was built for determination of carcinoembryonic antigen (CEA) based on papain-based colorimetric catalytic sensing system through the use of glucose oxidase (GOx). In the presence of GOx, glucose was catalytically oxidized to produce H2O2. Through the assistance of papain (as a peroxide mimetic enzyme), the signal came from the oxidative color development of 3,3',5,5'-tetramethylbenzidine (TMB, from colorless to blue) catalyzed by the generated H2O2. Herein, a sandwich-type immunoassay was built based on GOx as labels. As the concentration of CEA increased, more GOx-labeled antibodies specifically associate with target, which leaded to more H2O2 generation. Immediately following this, more TMB were oxidized with the addition of papain. Accordingly, the absorbance increased further. As a result, the concentration of CEA is positively correlated with the change in absorbance of the solution. Under optimal conditions, the CEA concentration was linear in the range of 0.05-20.0 ng/mL, and the limit of detection (LOD) reached 37 pg/mL. The papain-based colorimetric immunoassay also exhibited satisfactory repeatability, stability, and selectivity.
Collapse
Affiliation(s)
- Xiaoqin Li
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Xiaoxue Lu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Linyu Zhang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Zhixiong Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China.
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China.
| |
Collapse
|
2
|
Ahn YJ, Ahn BK, Kang SW, Lee GJ. Nanozyme based colorimetric detection of biogenic gaseous H 2S using Ag@Au core/shell nanoplates with peroxidase-like activity. Mikrochim Acta 2023; 190:405. [PMID: 37731070 DOI: 10.1007/s00604-023-05979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
A highly sensitive and facile colorimetric assay is introduced for detecting biogenic gaseous H2S using peroxidase (POD)-like catalytic activity of silver core/gold shell nanoplates (Ag@Au NPls). H2S can react with Ag@Au NPls to form Ag2S or Au2S on their surface, which can reduce POD-like activity of Ag@Au NPls and consequently decrease the absorbance at 650 nm due to oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). For in situ and multiple detection of H2S, we utilized a microplate cover with 24 polydimethylsiloxane inner wells where Ag@Au NPls reacted with H2S gas followed by treatment with TMB/H2O2. As a result, the change in absorbance at 650 nm showed a linear relationship with the H2S concentration in the range 0.33 to 2.96 μM (0.36 absorbance/μM H2S in PBS, R2 = 0.994) with a limit of detection of 263 nM and a relative standard deviation of 4.4%. Finally, this assay could detect H2S released from Eikenella corrodens, used as a model bacterium, in a short time (20 min) or at a low number of bacteria (1 × 104 colony forming units/mL). Therefore, this assay is expected to be applied for the study of H2S signaling in bacterial physiology, as well as measure H2S production released from other oral bacteria that cause halitosis and oral diseases, leading to the subsequent diagnosis.
Collapse
Affiliation(s)
- Yong Jin Ahn
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Byung-Ki Ahn
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Sung-Woong Kang
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Gi-Ja Lee
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Di Y, Zheng J, Zhao Y, Yang Z, Xie C, Yu J, Zheng Y, Gao L. Colorimetric/photothermal dual-mode sensing detection of ascorbic acid based on a Ag[i] ion/3,3',5,5'-tetramethylbenzidine (TMB) system. RSC Adv 2022; 12:36012-36017. [PMID: 36545108 PMCID: PMC9753968 DOI: 10.1039/d2ra06770f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, a novel strategy of colorimetric and photothermal dual-mode sensing determination of ascorbic acid (AA) based on a Ag+/3,3',5,5'-tetramethylbenzidine (TMB) system was developed. In this sensing system, Ag+ could oxidize TMB with a distinct color change from colorless to blue color, strong absorbance at 652 nm and a photothermal effect under 808 nm laser irradiation due to the formation of oxidized TMB (oxTMB). When AA was present, oxTMB was reduced accompanied by a change from blue to colorless, and a decrease in absorption peak intensity and the photothermal effect. AA concentration showed a negative linear correlation with the value of both the absorbance intensity at 652 nm and temperature in the range of 0.2-10 μM (A = -0.03C + 0.343 (R 2, 0.9887; LOD, 50 nM); ΔT = -0.57C + 8.453 (R 2, 0.997; LOD, 7.8 nM)). Based on this, a sensing approach for detection of AA was proposed with dual-mode and without the complicated synthesis of nanomaterials. The photothermal effect and colorimetric signal provided a dual-mode detection strategy for AA, overcoming the limitations of any single mode. This colorimetric and photothermal dual-mode detection has great potential in the detection of AA in clinical pharmaceuticals and the construction of portable and highly sensitive sensors.
Collapse
Affiliation(s)
- Ya Di
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Jiyao Zheng
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Yunwang Zhao
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Zikai Yang
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Changshun Xie
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Jiahan Yu
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Yue Zheng
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Liming Gao
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| |
Collapse
|
4
|
Gkantzou E, Chatzikonstantinou AV, Fotiadou R, Giannakopoulou A, Patila M, Stamatis H. Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations. Biotechnol Adv 2021; 51:107738. [PMID: 33775799 DOI: 10.1016/j.biotechadv.2021.107738] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
The ever-growing demand for cost-effective and innocuous biocatalytic transformations has prompted the rational design and development of robust biocatalytic tools. Enzyme immobilization technology lies in the formation of cooperative interactions between the tailored surface of the support and the enzyme of choice, which result in the fabrication of tremendous biocatalytic tools with desirable properties, complying with the current demands even on an industrial level. Different nanoscale materials (organic, inorganic, and green) have attracted great attention as immobilization matrices for single or multi-enzymatic systems. Aiming to unveil the potentialities of nanobiocatalytic systems, we present distinct immobilization strategies and give a thorough insight into the effect of nanosupports specific properties on the biocatalysts' structure and catalytic performance. We also highlight the development of nanobiocatalysts for their incorporation in cascade enzymatic processes and various types of batch and continuous-flow reactor systems. Remarkable emphasis is given on the application of such nanobiocatalytic tools in several biocatalytic transformations including bioremediation processes, biofuel production, and synthesis of bioactive compounds and fine chemicals for the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Elena Gkantzou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Alexandra V Chatzikonstantinou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Renia Fotiadou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Archontoula Giannakopoulou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Michaela Patila
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
5
|
Bilal M, Barceló D, Iqbal HMN. Nanostructured materials for harnessing the power of horseradish peroxidase for tailored environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142360. [PMID: 33370916 DOI: 10.1016/j.scitotenv.2020.142360] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 02/05/2023]
Abstract
High catalytic efficiency, stereoselectivity, and sustainability outcomes of enzymes entice chemists for considering biocatalytic transformations to supplant conventional synthetic routes. As a green and versatile enzyme, horseradish peroxidase (HRP)-based enzymatic catalysis has been widely employed in a range of biological and chemical transformation processes. Nevertheless, like many other enzymes, HRP is likely to denature or destabilize in harsh realistic conditions due to its intrinsic fragile nature, which results in inevitably shortened lifespan and immensely high bioprocess cost. Enzyme immobilization has proven as a prospective strategy for improving their biocatalytic performance in continuous industrial processes. Nanostructured materials with huge accessible surface area, abundant porous structures, exceptional functionalities, and high chemical and mechanical stability have recently garnered intriguing research interests as novel kinds of supporting matrices for HRP immobilization. Many reported immobilized biocatalytic systems have demonstrated high catalytic performances than that to the free form of enzymes, such as enhanced enzyme efficiency, selectivity, stability, and repeatability due to the protective microenvironments provided by nanostructures. This review delineates an updated overview of HRP immobilization using an array of nanostructured materials. Furthermore, the general physicochemical aspects, improved catalytic attributes, and the robust practical implementations of engineered HRP-based catalytic cues are also discussed with suitable examples. To end, concluding remarks, challenges, and worthy suggestions/perspectives for future enzyme immobilization are also given.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Damiá Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
6
|
Barbosa GSDS, Oliveira MEPS, dos Santos ABS, Sánchez OC, Soares CMF, Fricks AT. Immobilization of Low-Cost Alternative Vegetable Peroxidase ( Raphanus sativus L. peroxidase): Choice of Support/Technique and Characterization. Molecules 2020; 25:molecules25163668. [PMID: 32806564 PMCID: PMC7466051 DOI: 10.3390/molecules25163668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
In the present work the radish (Raphanus sativus L.) was used as the low-cost alternative source of peroxidase. The enzyme was immobilized in different supports: coconut fiber (CF), calcium alginate microspheres (CAMs) and silica SBA-15/albumin hybrid (HB). Physical adsorption (PA) and covalent binding (CB) as immobilization techniques were evaluated. Immobilized biocatalysts (IBs) obtained were physicochemical and morphologically characterized by SEM, FTIR and TGA. Also, optimum pH/temperature and operational stability were determined. For all supports, the immobilization by covalent binding provided the higher immobilization efficiencies-immobilization yield (IY%) of 89.99 ± 0.38% and 77.74 ± 0.42% for HB and CF, respectively. For CAMs the activity recovery (AR) was of 11.83 ± 0.68%. All IBs showed optimum pH at 6.0. Regarding optimum temperature of the biocatalysts, HB-CB and CAM-CB maintained the original optimum temperature of the free enzyme (40 °C). HB-CB showed higher operational stability, maintaining around 65% of the initial activity after four consecutive cycles. SEM, FTIR and TGA results suggest the enzyme presence on the IBs. Radish peroxidase immobilized on HB support by covalent binding is promising in future biotechnological applications.
Collapse
Affiliation(s)
- Gabrielle Souza da Silva Barbosa
- Programa de Pós-Graduação em Biotecnologia Industrial, Tiradentes University, 49032-490 Aracaju, SE, Brazil; (G.S.d.S.B.); (M.E.P.S.O.); (A.B.S.d.S.); (C.M.F.S.)
- Laboratory of Bioprocess Engineering, Institute of Technology and Research, Farolândia, 49032-490 Aracaju, SE, Brazil
| | - Maria Emanuela P. S. Oliveira
- Programa de Pós-Graduação em Biotecnologia Industrial, Tiradentes University, 49032-490 Aracaju, SE, Brazil; (G.S.d.S.B.); (M.E.P.S.O.); (A.B.S.d.S.); (C.M.F.S.)
- Laboratory of Bioprocess Engineering, Institute of Technology and Research, Farolândia, 49032-490 Aracaju, SE, Brazil
| | - Ana Beatriz S. dos Santos
- Programa de Pós-Graduação em Biotecnologia Industrial, Tiradentes University, 49032-490 Aracaju, SE, Brazil; (G.S.d.S.B.); (M.E.P.S.O.); (A.B.S.d.S.); (C.M.F.S.)
- Laboratory of Bioprocess Engineering, Institute of Technology and Research, Farolândia, 49032-490 Aracaju, SE, Brazil
| | - Osmar Calderón Sánchez
- Laboratory of Organic Synthesis, Faculty of Chemistry, La Habana University, 10400 La Habana, Cuba;
| | - Cleide Mara Faria Soares
- Programa de Pós-Graduação em Biotecnologia Industrial, Tiradentes University, 49032-490 Aracaju, SE, Brazil; (G.S.d.S.B.); (M.E.P.S.O.); (A.B.S.d.S.); (C.M.F.S.)
- Laboratory of Bioprocess Engineering, Institute of Technology and Research, Farolândia, 49032-490 Aracaju, SE, Brazil
| | - Alini Tinoco Fricks
- Programa de Pós-Graduação em Biotecnologia Industrial, Tiradentes University, 49032-490 Aracaju, SE, Brazil; (G.S.d.S.B.); (M.E.P.S.O.); (A.B.S.d.S.); (C.M.F.S.)
- Laboratory of Bioprocess Engineering, Institute of Technology and Research, Farolândia, 49032-490 Aracaju, SE, Brazil
- Correspondence: ; Tel.: +55-79-32182190
| |
Collapse
|
7
|
Immobilization of horseradish peroxidase on polyglycerol-functionalized magnetic Fe3O4/nanodiamond nanocomposites and its application in phenol biodegradation. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03937-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Zhu B, Chen Y, Wei N. Engineering Biocatalytic and Biosorptive Materials for Environmental Applications. Trends Biotechnol 2019; 37:661-676. [DOI: 10.1016/j.tibtech.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
|
9
|
Simple and fast determination of biothiols using Fe3+-3, 3′, 5, 5′-tetramethylbenzidine as a colorimetric probe. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Chen Y, Zhong Q, Wang Y, Yuan C, Qin X, Xu Y. Colorimetric detection of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of papain. RSC Adv 2019; 9:16566-16570. [PMID: 35516354 PMCID: PMC9064409 DOI: 10.1039/c9ra03111a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
Papain, a natural plant protease that exists in the latex of Carica papaya, catalyzes the hydrolysis of peptide, ester and amide bonds. In this work, we found that papain displayed peroxidase-like activity and catalyzed the oxidation of 3,3',5',5'-tetramethylbenzidine (TMB) in the presence of H2O2. This results in the formation of a blue colored product with an absorption maximum at 652 nm. The effects of experimental parameters including pH and reaction temperature on catalytic activity of papain were investigated. The increase of absorbance induced by the catalytic effect of papain offers accurate detection of H2O2 in the range of 5.00-90.0 μM, along with a detection limit of 2.10 μM. A facile colorimetric method for glucose detection was also proposed by combining the glucose oxidase (GOx)-catalyzed glucose oxidation and papain-catalyzed TMB oxidation, which exhibited a linear response in the range of 0.05-0.50 mM with a detection limit of 0.025 mM. The method proposed here displayed excellent selectivity, indicating that common coexisting substances (urea, uric acid, ascorbic acid, maltose, lactose and fructose) in urine did not interfere with detection of glucose. More importantly, the suggested method was successfully used to precisely detect the glucose concentration in human urine samples with recoveries over 96.0%.
Collapse
Affiliation(s)
- Yuye Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| | - Qingmei Zhong
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| | - Yilin Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety Nanning 530004 China +86 771 3392879
| | - Chunling Yuan
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| | - Xiu Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| | - Yuanjin Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| |
Collapse
|
11
|
Effect of metal ions present in milk on the structure and functional integrity of native and polyaniline chitosan nanocomposites bound β-galactosidase: A multi-spectroscopic approach. Food Chem 2019; 279:312-320. [DOI: 10.1016/j.foodchem.2018.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 11/18/2022]
|
12
|
Asmat S, Husain Q. A robust nanobiocatalyst based on high performance lipase immobilized to novel synthesised poly(o-toluidine) functionalized magnetic nanocomposite: Sterling stability and application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:25-36. [PMID: 30889698 DOI: 10.1016/j.msec.2019.01.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/19/2022]
Abstract
Herein, as a promising support, a magnetic enzyme nanoformulation have been designed and fabricated by a poly-o-toluidine modification approach. Owing to the magnetic nature and the existence of amine functionalized groups, the as-synthesised poly(o-toluidine) functionalized magnetic nanocomposite (Fe3O4@POT) was employed as potential support for Candida rugosa lipase (CRL) immobilization to explore its application in fruit flavour esters synthesis. The morphology and structure of the Fe3O4@POT NC were examined through various analytical tools. Hydrolytic activity assays disclose that immobilized lipase demonstrated an activity yield of 120%. It is worth mentioning that CRL#Fe3O4@POT showed superior resistance to extremes of temperature and pH and different organic solvents in contrast to free CRL. The magnetic behaviour of the as-synthesised NC was affirmed by alternating gradient magnetometer analysis. It was found to own facile immobilization process, enhanced catalytic performance for the immobilized form which may be stretched to the immobilization of various vital industrial enzymes. Moreover, it retained improved recycling performance. After 10 cycles of repetitive uses, it still possessed around 90% of its initial activity for the hydrolytic reaction, since the enzyme-magnetic nanoconjugate was effortlessly obtained using a magnet from the reaction system. The formulated nanobiocatalyst was selected for the esterification reaction to synthesize the fruit flavour esters, ethyl acetoacetate and ethyl valerate. The immobilized lipase successfully synthesised flavour compounds in aqueous and n-hexane media having significant higher ester yields compared to free enzyme. The present work successfully combines an industrially prominent biocatalyst, CRL, and a novel magnetic nanocarrier, Fe3O4@POT, into an immobilized nanoformulation with upgraded catalytic properties which has excellent potential for practical industrial implications.
Collapse
Affiliation(s)
- Shamoon Asmat
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
13
|
Huerta-Miranda G, Arrocha-Arcos A, Miranda-Hernández M. Gold nanoparticles/4-aminothiophenol interfaces for direct electron transfer of horseradish peroxidase: Enzymatic orientation and modulation of sensitivity towards hydrogen peroxide detection. Bioelectrochemistry 2018; 122:77-83. [DOI: 10.1016/j.bioelechem.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 11/30/2022]
|
14
|
Tavares TS, Torres JA, Silva MC, Nogueira FGE, da Silva AC, Ramalho TC. Soybean peroxidase immobilized on δ-FeOOH as new magnetically recyclable biocatalyst for removal of ferulic acid. Bioprocess Biosyst Eng 2018; 41:97-106. [PMID: 28986654 DOI: 10.1007/s00449-017-1848-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/27/2017] [Indexed: 12/28/2022]
Abstract
A significant enhancement in the catalytic performance due to enzymes immobilization is a great way to enhance the economics of biocatalytic processes. The soybean peroxidase (SP) immobilization under ferroxyte and the ferulic acid removal by the enzyme free and immobilized were investigated. The immobilization via silica-coated ferroxyte nanoparticles was effective, and immobilization yield of 39%. The scanning electron microscopy (SEM) images showed significant changes in the materials morphology. Substantial differences were observed in the particles' Fourier Transform Infrared (FTIR) spectra. The magnetic catalyst revealed a better performance than the free enzyme in the ferulic acid conversion, presenting a good V max/K m ratio when compared with the free enzyme. The reuse evaluated by ten cycles exhibited excellent recycling, remaining constant between the sixth and seventh cycles. The use of magnetic nanocatalyst becomes possible to eliminate the high operational costs, and complicated steps of the conventional enzymatic processes. Thus, a viable industrial route for the use of the enzyme as catalyst is possible.
Collapse
Affiliation(s)
- Tássia Silva Tavares
- Department of Chemistry, Federal University of Lavras, N° 37, 37200-000, Lavras, MG, Brazil
| | - Juliana Arriel Torres
- Department of Chemistry, Federal University of Lavras, N° 37, 37200-000, Lavras, MG, Brazil
| | - Maria Cristina Silva
- Department of Chemistry, Federal University of Lavras, N° 37, 37200-000, Lavras, MG, Brazil
- Department of Chemistry, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | | | - Adilson C da Silva
- Department of Chemistry, Federal University of Ouro Preto, 35400-000, Ouro Preto, MG, Brazil
| | - Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, N° 37, 37200-000, Lavras, MG, Brazil.
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
15
|
Bayramoglu G, Doz T, Ozalp VC, Arica MY. Improvement stability and performance of invertase via immobilization on to silanized and polymer brush grafted magnetic nanoparticles. Food Chem 2017; 221:1442-1450. [DOI: 10.1016/j.foodchem.2016.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
16
|
Song J, Su P, Yang Y, Yang Y. Efficient immobilization of enzymes onto magnetic nanoparticles by DNA strand displacement: a stable and high-performance biocatalyst. NEW J CHEM 2017. [DOI: 10.1039/c7nj00284j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An efficient enzyme immobilization strategy based on toehold-mediated DNA strand displacement on modified magnetic nanoparticles was developed in this study.
Collapse
Affiliation(s)
- Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ye Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
17
|
Liu L, Leng J, Yang X, Liao L, Cen Y, Xiao A, Ma L. Rapid Screening and Identification of BSA Bound Ligands from Radix astragali Using BSA Immobilized Magnetic Nanoparticles Coupled with HPLC-MS. Molecules 2016; 21:molecules21111471. [PMID: 27827956 PMCID: PMC6274147 DOI: 10.3390/molecules21111471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022] Open
Abstract
Radix astragali is widely used either as a single herb or as a collection of herbs in a complex prescription in China. In this study, bovine serum albumin functionalized magnetic nanoparticles (BSA-MN) coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS) were used to screen and identify bound ligands from the n-butanol part of a Radix astragali extract. The prepared BSA-MN showed sufficient magnetic response for the separation with an ordinary magnet and satisfied reusability. Fundamental parameters affecting the preparation of BSA-MN and the screening efficiency were studied and optimized. Under the optimum conditions, four bound ligands were screened out from the n-butanol part of a Radix astragali extract and identified as genistin (1), calycosin-7-O-β-d-glucoside (2), ononin (3) and formononetin (4). This effective method could be widely applied for rapid screening and identification of active compounds from complex mixtures without the need for preparative isolation.
Collapse
Affiliation(s)
- Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Juan Leng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Liping Liao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Yin Cen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Aiping Xiao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Lei Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| |
Collapse
|
18
|
Sahin S, Ozmen I. Determination of optimum conditions for glucose-6-phosphate dehydrogenase immobilization on chitosan-coated magnetic nanoparticles and its characterization. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Magnetic Fe3O4 nanoparticle catalyzed chemiluminescence for detection of nitric oxide in living cells. Anal Bioanal Chem 2016; 408:5479-88. [DOI: 10.1007/s00216-016-9646-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/04/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
|