1
|
Thakur N, Gupta D, Mandal D, Nagaiah TC. Ultrasensitive electrochemical biosensors for dopamine and cholesterol: recent advances, challenges and strategies. Chem Commun (Camb) 2021; 57:13084-13113. [PMID: 34811563 DOI: 10.1039/d1cc05271c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The rapid and accurate determination of the dopamine (neurotransmitter) and cholesterol level in bio-fluids is significant because they are crucial bioanalytes for several lethal diseases, which require early diagnosis. The level of DA in the brain is modulated by the dopamine active transporter (DAT), and is influenced by cholesterol levels in the lipid membrane environment. Accordingly, electrochemical biosensors offer rapid and accurate detection and exhibit unique features such as low detection limits even with reduced volumes of analyte, affordability, simple handling, portability and versatility, making them appropriate to deal with augmented challenges in current clinical and point-of-care diagnostics for the determination of dopamine (DA) and cholesterol. This feature article focuses on the development of ultrasensitive electrochemical biosensors for the detection of cholesterol and DA for real-time and onsite applications that can detect targeted analytes with reduced volumes and sub-picomolar concentrations with quick response times. Furthermore, the development of ultrasensitive biosensors via cost-effective, simple fabrication procedures, displaying high sensitivity, selectivity, reliability and good stability is significant in the impending era of electrochemical biosensing. Herein, we emphasize on recent advanced nanomaterials used for the ultrasensitive detection of DA and cholesterol and discuss in depth their electrochemical activities towards ultrasensitive responses. Key points describing future perspectives and the challenges during detection with their probable solutions are discussed, and the current market is also surveyed. Further, a comprehensive review of the literature indicates that there is room for improvement in the miniaturization of cholesterol and dopamine biosensors for lab-on-chip devices and overcoming the current technical limitations to facilitate full utilization by patients at home.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India.
| | - Divyani Gupta
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India.
| | - Debaprasad Mandal
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India.
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India.
| |
Collapse
|
2
|
Pinheiro T, Marques AC, Carvalho P, Martins R, Fortunato E. Paper Microfluidics and Tailored Gold Nanoparticles for Nonenzymatic, Colorimetric Multiplex Biomarker Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3576-3590. [PMID: 33449630 DOI: 10.1021/acsami.0c19089] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The plasmonic properties of gold nanoparticles (AuNPs) are a promising tool to develop sensing alternatives to traditional, enzyme-catalyzed reactions. The need for sensing alternatives, especially in underdeveloped areas of the world, has given rise to the application of nonenzymatic sensing approaches paired with cellulosic substrates to biochemical analysis. Herein, we present three individual, low-step, wet-chemistry, colorimetric assays for three target biomarkers, namely, glucose, uric acid, and free cholesterol, relevant in diabetes control and their translation into paper-based assays and microfluidic platforms for multiplexed analysis. For glucose determination, an in situ AuNPs synthesis approach was applied into the developed μPAD, giving semiquantitative measures in the physiologically relevant range. For uric acid and cholesterol determination, modified AuNPs were used to functionalize paper with a gold-on-paper approach with the optical properties changing based on different aggregation degrees and hydrophobic properties of particles dependent on analyte concentration. These paper-based assays show sensitivity ranges and limits of detection compatible for target analyte level determination and detection limits comparable to those of similar enzymatic, colorimetric systems, relying only on plasmonic transduction without the need for enzymatic activity or other chromogenic substrates. The resulting paper-based assays were integrated into a single 3D, multiplex paper-based device using paper microfluidics, showing the capability for performing different colorimetric assays with distinct requirements in terms of sample flow and sample uptake in test zones using a combination of both horizontal and vertical flows inside the same device. The presented device allows for multiparametric, colorimetric measures of different metabolite levels from a single complex sample matrix drop using digital color analysis, showing the potential for development of low-cost, low-complexity tools for diagnostics toward the point-of-care.
Collapse
Affiliation(s)
- Tomás Pinheiro
- CENIMAT|i3N, Departamento de Ciência de Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Ana C Marques
- CENIMAT|i3N, Departamento de Ciência de Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Patrícia Carvalho
- SINTEF Materials and Chemistry, PB 124, Blindern, NO-0314 Oslo, Norway
| | - Rodrigo Martins
- CENIMAT|i3N, Departamento de Ciência de Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Departamento de Ciência de Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Kumar S, Kaushik BK, Singh R, Chen NK, Yang QS, Zhang X, Wang W, Zhang B. LSPR-based cholesterol biosensor using a tapered optical fiber structure. BIOMEDICAL OPTICS EXPRESS 2019. [PMID: 31149369 DOI: 10.1109/jsen.2019.2916818] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Accurate cholesterol level measurement plays an important role in the diagnosis of severe diseases such as cardiovascular diseases, hypertension, anemia, myxedemia, hyperthyroidism, coronary artery illness. Traditionally, electrochemical sensors have been employed to detect the cholesterol level. However, these sensors have limitations in terms of sensitivity and selectivity. In this paper, a localized surface plasmon resonance (LSPR) -based biosensor is demonstrated that accurately detects and measures the concentration of cholesterol. In the present study, a tapered optical fiber-based sensor probe is developed using gold nanoparticles (AuNPs) and cholesterol oxidase (ChOx) to increase the sensitivity and selectivity of the sensor. Synthesized AuNPs were characterized by UV-visible spectrophotometer, transmission electron microscope (TEM), and energy dispersive X-ray spectroscopy (EDS). Further, coating of AuNPs over fiber was confirmed by scanning electron microscope (SEM). The developed sensor demonstrates for a clinically important cholesterol range of 0 to 10 mM, and the limit of detection is found to be 53.1 nM.
Collapse
Affiliation(s)
- Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Brajesh Kumar Kaushik
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, Shandong, China
- Department of Electronics and Communication Engineering, Indian Institute of Technology-Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ragini Singh
- School of Agriculture Science, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Nan-Kuang Chen
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Qing Shan Yang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Xia Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Wenjun Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, Shandong, China
| |
Collapse
|
4
|
Alim S, Vejayan J, Yusoff MM, Kafi AKM. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: A review. Biosens Bioelectron 2018; 121:125-136. [PMID: 30205246 DOI: 10.1016/j.bios.2018.08.051] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023]
Abstract
The innovation of nanoparticles assumes a critical part of encouraging and giving open doors and conceivable outcomes to the headway of new era devices utilized as a part of biosensing. The focused on the quick and legitimate detecting of specific biomolecules using functionalized gold nanoparticles (Au NPs), and carbon nanotubes (CNTs) has turned into a noteworthy research enthusiasm for the most recent decade. Sensors created with gold nanoparticles or carbon nanotubes or in some cases by utilizing both are relied upon to change the very establishments of detecting and distinguishing various analytes. In this review, we will examine the current utilization of functionalized AuNPs and CNTs with other synthetic mixes for the creation of biosensor prompting to the location of particular analytes with low discovery cutoff and quick reaction.
Collapse
Affiliation(s)
- Samiul Alim
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Jaya Vejayan
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Mashitah M Yusoff
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - A K M Kafi
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia.
| |
Collapse
|
5
|
Li G, Li S, Wang Z, Xue Y, Dong C, Zeng J, Huang Y, Liang J, Zhou Z. Label-free electrochemical aptasensor for detection of alpha-fetoprotein based on AFP-aptamer and thionin/reduced graphene oxide/gold nanoparticles. Anal Biochem 2018; 547:37-44. [PMID: 29452105 DOI: 10.1016/j.ab.2018.02.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 02/07/2023]
Abstract
Sensitive and accurate detection of tumor markers is critical to early diagnosis, point-of-care and portable medical supervision. Alpha fetoprotein (AFP) is an important clinical tumor marker for hepatocellular carcinoma (HCC), and the concentration of AFP in human serum is related to the stage of HCC. In this paper, a label-free electrochemical aptasensor for AFP detection was fabricated using AFP-aptamer as the recognition molecule and thionin/reduced graphene oxide/gold nanoparticles (TH/RGO/Au NPs) as the sensor platform. With high electrocatalytic property and large specific surface area, RGO and Au NPs were employed on the screen-printed carbon electrode to load TH molecules. The TH not only acted as a bridging molecule to effectively capture and immobilize AFP-aptamer, but as the electron transfer mediator to provide the electrochemical signal. The AFP detection was based on the monitoring of the electrochemical current response change of TH by the differential pulse voltammetry. Under optimal conditions, the electrochemical responses were proportional to the AFP concentration in the range of 0.1-100.0 μg/mL. The limit of detection was 0.050 μg/mL at a signal-to-noise ratio of 3. The proposed method may provide a promising application of aptamer with the properties of facile procedure, low cost, high selectivity in clinic.
Collapse
Affiliation(s)
- Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shanshan Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zhihong Wang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Yewei Xue
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Chenyang Dong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Junxiang Zeng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Yong Huang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Jintao Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| |
Collapse
|
6
|
Light-addressable potentiometric sensor with gold nanoparticles enhancing enzymatic silver deposition for 1,5-anhydroglucitol determination. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|