1
|
Dzuvor CKO. Toward Clinical Applications: Transforming Nonantibiotic Antibacterials into Effective Next-Generation Supramolecular Therapeutics. ACS NANO 2024; 18:2564-2577. [PMID: 38227832 DOI: 10.1021/acsnano.3c11045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Antibiotic resistance is a major driver of morbidity and mortality worldwide, necessitating alternatives. Due to their mechanism of action, bacteriophages, endolysins, and antimicrobial peptides (coined herein as nonantibiotic antibacterials, NAA) have risen to tackle this problem and led to paradigms in treating antibiotic-resistant bacterial infections. However, their clinical applications remain challenging and have been seriously hampered by cytotoxicity, instability, weak bioactivity, low on-target bioavailability, high pro-inflammatory responses, shorter half-life, and circulatory properties. Hence, to transit preclinical phases and beyond, it has become imperative to radically engineer these alternatives into innovative and revolutionary therapeutics to overcome recalcitrant infections. This perspective highlights the promise of these agents, their limitations, promising designs, nanotechnology, and delivery approaches that can be harnessed to transform these agents. Finally, I provide an outlook on the remaining challenges that need to be tackled for their widespread clinical administration.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Gómez-Lázaro L, Martín-Sabroso C, Aparicio-Blanco J, Torres-Suárez AI. Assessment of In Vitro Release Testing Methods for Colloidal Drug Carriers: The Lack of Standardized Protocols. Pharmaceutics 2024; 16:103. [PMID: 38258113 PMCID: PMC10819705 DOI: 10.3390/pharmaceutics16010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Although colloidal carriers have been in the pipeline for nearly four decades, standardized methods for testing their drug-release properties remain to be established in pharmacopeias. The in vitro assessment of drug release from these colloidal carriers is one of the most important parameters in the development and quality control of drug-loaded nano- and microcarriers. This lack of standardized protocols occurs due to the difficulties encountered in separating the released drug from the encapsulated one. This review aims to compare the most frequent types of release testing methods (i.e., membrane diffusion techniques, sample and separate methods and in situ detection techniques) in terms of the advantages and disadvantages of each one and of the key parameters that influence drug release in each case.
Collapse
Affiliation(s)
- Laura Gómez-Lázaro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Choi V, Rohn JL, Stoodley P, Carugo D, Stride E. Drug delivery strategies for antibiofilm therapy. Nat Rev Microbiol 2023; 21:555-572. [PMID: 37258686 DOI: 10.1038/s41579-023-00905-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Although new antibiofilm agents have been developed to prevent and eliminate pathogenic biofilms, their widespread clinical use is hindered by poor biocompatibility and bioavailability, unspecific interactions and insufficient local concentrations. The development of innovative drug delivery strategies can facilitate penetration of antimicrobials through biofilms, promote drug dispersal and synergistic bactericidal effects, and provide novel paradigms for clinical application. In this Review, we discuss the potential benefits of such emerging techniques for improving the clinical efficacy of antibiofilm agents, as well as highlighting the existing limitations and future prospects for these therapies in the clinic.
Collapse
Affiliation(s)
- Victor Choi
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Centre for Urological Biology, Division of Medicine, University College London, London, UK
| | - Paul Stoodley
- Departments of Microbial Infection and Immunity, Microbiology and Orthopaedics, The Ohio State University, Columbus, OH, USA
- Department of Mechanical Engineering, National Centre for Advanced Tribology at Southampton (nCATS) and National Biofilm Innovation Centre (NBIC), University of Southampton, Southampton, UK
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Yayehrad AT, Wondie GB, Marew T. Different Nanotechnology Approaches for Ciprofloxacin Delivery Against Multidrug-Resistant Microbes. Infect Drug Resist 2022; 15:413-426. [PMID: 35153493 PMCID: PMC8828447 DOI: 10.2147/idr.s348643] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
The percentages of organisms exhibiting antimicrobial resistance, especially resistance to multiple antibiotics, are incessantly increasing. Studies investigated that many bacteria are being resistant to ciprofloxacin. This review addresses the current knowledge on nano-based ciprofloxacin delivery approaches to improve its effectiveness and overcome the resistance issues. Ciprofloxacin delivery can be modified by encapsulating with or incorporating in different polymeric nanoparticles such as chitosan, PLGA, albumin, arginine, and other organic and inorganic nanostructure systems. Most of these nano-approaches are promising as an alternative strategy to improve the therapeutic effectiveness of ciprofloxacin in the future.
Collapse
Affiliation(s)
- Ashagrachew Tewabe Yayehrad
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Gebremariam Birhanu Wondie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tesfa Marew
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Qualls ML, Sagar R, Lou J, Best MD. Demolish and Rebuild: Controlling Lipid Self-Assembly toward Triggered Release and Artificial Cells. J Phys Chem B 2021; 125:12918-12933. [PMID: 34792362 DOI: 10.1021/acs.jpcb.1c07406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ability to modulate the structures of lipid membranes, predicated on our nuanced understanding of the properties that drive and alter lipid self-assembly, has opened up many exciting biological applications. In this Perspective, we focus on two endeavors in which the same principles are invoked to achieve completely opposite results. On one hand, controlled liposome decomposition enables triggered release of encapsulated cargo through the development of synthetic lipid switches that perturb lipid packing in the presence of disease-associated stimuli. In particular, recent approaches have utilized artificial lipid switches designed to undergo major conformational changes in response to a range of target conditions. On the other end of the spectrum, the ability to drive the in situ formation of lipid bilayer membranes from soluble precursors is an important component in the establishment of artificial cells. This work has culminated in chemoenzymatic strategies that enable lipid manufacturing from simple components. Herein, we describe recent advancements in these two unique undertakings that are linked by their reliance on common principles of lipid self-assembly.
Collapse
Affiliation(s)
- Megan L Qualls
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Ruhani Sagar
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
6
|
Kilian HI, Pradhan AJ, Jahagirdar D, Ortega J, Atilla-Gokcumen GE, Lovell JF. Light-Triggered Release of Large Biomacromolecules from Porphyrin-Phospholipid Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10859-10865. [PMID: 34450021 DOI: 10.1021/acs.langmuir.1c01848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liposomes containing small amounts of porphyrin-phospholipid (PoP) have been shown to encapsulate small molecular weight cargos and then release them upon exposure to red light. A putative mechanism involves transient pore formation in the bilayer induced by PoP-mediated photo-oxidation of unsaturated lipids. However, little is known about the properties of such pores. This study assesses whether large carbohydrate and protein molecules could be released from PoP liposomes upon red light exposure. A small fluorophore with ∼0.5 kDa in molecular weight, fluorescently labeled dextrans of ∼5 and ∼500 kDa, and a ∼240 kDa fluorescent protein were passively entrapped in PoP liposomes. When exposed to 665 nm irradiation, liposomes containing PoP, but not liposomes lacking it, released all these cargos in a size-dependent manner that occurred with oxidation of unsaturated lipids included in the bilayer. Thus, this study demonstrates the feasibility of light-triggered release of large biomacromolecules from liposomes.
Collapse
Affiliation(s)
- Hailey I Kilian
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Apoorva J Pradhan
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Gunes Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
7
|
Terreni M, Taccani M, Pregnolato M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 2021; 26:2671. [PMID: 34063264 PMCID: PMC8125338 DOI: 10.3390/molecules26092671] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
The present work aims to examine the worrying problem of antibiotic resistance and the emergence of multidrug-resistant bacterial strains, which have now become really common in hospitals and risk hindering the global control of infectious diseases. After a careful examination of these phenomena and multiple mechanisms that make certain bacteria resistant to specific antibiotics that were originally effective in the treatment of infections caused by the same pathogens, possible strategies to stem antibiotic resistance are analyzed. This paper, therefore, focuses on the most promising new chemical compounds in the current pipeline active against multidrug-resistant organisms that are innovative compared to traditional antibiotics: Firstly, the main antibacterial agents in clinical development (Phase III) from 2017 to 2020 are listed (with special attention on the treatment of infections caused by the pathogens Neisseria gonorrhoeae, including multidrug-resistant isolates, and Clostridium difficile), and then the paper moves on to the new agents of pharmacological interest that have been approved during the same period. They include tetracycline derivatives (eravacycline), fourth generation fluoroquinolones (delafloxacin), new combinations between one β-lactam and one β-lactamase inhibitor (meropenem and vaborbactam), siderophore cephalosporins (cefiderocol), new aminoglycosides (plazomicin), and agents in development for treating drug-resistant TB (pretomanid). It concludes with the advantages that can result from the use of these compounds, also mentioning other approaches, still poorly developed, for combating antibiotic resistance: Nanoparticles delivery systems for antibiotics.
Collapse
Affiliation(s)
| | | | - Massimo Pregnolato
- Department of Drug Science, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.T.); (M.T.)
| |
Collapse
|
8
|
Wu S, Gong Y, Liu S, Pei Y, Luo X. Functionalized phosphorylated cellulose microspheres: Design, characterization and ciprofloxacin loading and releasing properties. Carbohydr Polym 2021; 254:117421. [DOI: 10.1016/j.carbpol.2020.117421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
|
9
|
Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent Progress in Bioconjugation Strategies for Liposome-Mediated Drug Delivery. Molecules 2020; 25:E5672. [PMID: 33271886 PMCID: PMC7730700 DOI: 10.3390/molecules25235672] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
In nanoparticle (NP)-mediated drug delivery, liposomes are the most widely used drug carrier, and the only NP system currently approved by the FDA for clinical use, owing to their advantageous physicochemical properties and excellent biocompatibility. Recent advances in liposome technology have been focused on bioconjugation strategies to improve drug loading, targeting, and overall efficacy. In this review, we highlight recent literature reports (covering the last five years) focused on bioconjugation strategies for the enhancement of liposome-mediated drug delivery. These advances encompass the improvement of drug loading/incorporation and the specific targeting of liposomes to the site of interest/drug action. We conclude with a section highlighting the role of bioconjugation strategies in liposome systems currently being evaluated for clinical use and a forward-looking discussion of the field of liposomal drug delivery.
Collapse
Affiliation(s)
- Bethany Almeida
- American Society for Engineering Education, Washington, DC 20036, USA;
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| | - Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| | - Katherine E. Rogers
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
- Fischell Department of Bioengineering, 2330 Kim Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| |
Collapse
|
10
|
Lovell JF. Thinking outside the macrocycle: Potential biomedical roles for nanostructured porphyrins and phthalocyanines — a SPP/JPP Young Investigator Award paper. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620300086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porphyrins and phthalocyanines feature strong light absorption, capacity for metal chelation, and a track record of use in human therapeutic applications. Various conjugates and formulations of these macrocycles have shown potential to forge new applications in the biomedical sciences. Our lab has explored several such approaches including porphyrin polymer hydrogels, porphyrin-lipid nanovesicles, and surfactant-stripped micelles. These all feature in common a high density of tetrapyrroles, as well as unique functional properties. Porphyrin polymer hydrogels with high porphyrin density and bright fluorescence emission were demonstrated for use as a new class of implantable biosensors. Porphyrin-lipid nanovesicles hold potential for phototherapy, imaging, and also drug and vaccine delivery. Surfactant-stripped micelles have been developed for high-contrast photoacoustic imaging. In this ICPP Young Investigator Award brief perspective, we discuss our own efforts on these fronts. Taken together, the results show that tetrapyrroles enable new approaches for tackling biomedical problems and also confirm what was already well-known to members of the Society of Porphyrins and Phthalocyanines: that these molecules are remarkably versatile and enable research to flow in unexpected directions.
Collapse
Affiliation(s)
- Jonathan F. Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260 USA
| |
Collapse
|
11
|
Taguchi S, Kang BS, Suga K, Okamoto Y, Jung HS, Umakoshi H. A novel method of vesicle preparation by simple dilution of bicelle solution. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Marchianò V, Matos M, Serrano-Pertierra E, Gutiérrez G, Blanco-López MC. Vesicles as antibiotic carrier: State of art. Int J Pharm 2020; 585:119478. [PMID: 32473370 DOI: 10.1016/j.ijpharm.2020.119478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022]
Abstract
Antimicrobial resistance (AMR) has become a global health problem. Bacteria are able to adapt to different environments, with the presence or absence of a host, forming colonies and biofilms. In fact, biofilm formation confers chemical protection to the microbial cells, thus making most of the conventional antibiotics ineffective. Prevention and destruction of biofilms is a challenging task that should be addressed by a multidisciplinary approach from different research fields. One of the medical strategies used against biofilms is the therapy with drug delivery systems. Lipidic nanovesicles are a good choice for encapsulating drugs, increasing their pharmacodynamics and reducing side effects. These soft nanovesicles show significant advantages for their high biocompatibility, physical and chemistry properties, good affinity with drugs, and easy route of administration. This review summarizes the current knowledge on different types of vesicles which may be used as antibiotic carriers. The main preparation and purification methods for the synthesis of these vesicles are also presented. The advantages of drug encapsulation are critically reviewed. In addition, recent works on endolysin formulations as novel, "greener" and efficient antibiofilm solution are included. This paper can provide useful background for the design of novel efficient formulations and synergistic nanomaterials and could be also useful at the pharmaceutical industry to develop wastewater treatments and reduce the antibiotics in the environmental waters.
Collapse
Affiliation(s)
- Verdiana Marchianò
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain; Department of Chemical Engineering and Environmental Technology, University of Oviedo, 33006, Spain
| | - María Matos
- Department of Chemical Engineering and Environmental Technology, University of Oviedo, 33006, Spain; Institute of Biotechnology of Asturias, University of Oviedo, 33006, Spain
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain; Institute of Biotechnology of Asturias, University of Oviedo, 33006, Spain
| | - Gemma Gutiérrez
- Department of Chemical Engineering and Environmental Technology, University of Oviedo, 33006, Spain; Institute of Biotechnology of Asturias, University of Oviedo, 33006, Spain.
| | - M C Blanco-López
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain; Institute of Biotechnology of Asturias, University of Oviedo, 33006, Spain.
| |
Collapse
|
13
|
Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020; 12:E142. [PMID: 32046289 PMCID: PMC7076477 DOI: 10.3390/pharmaceutics12020142] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Based on the recent reports of World Health Organization, increased antibiotic resistance prevalence among bacteria represents the greatest challenge to human health. In addition, the poor solubility, stability, and side effects that lead to inefficiency of the current antibacterial therapy prompted the researchers to explore new innovative strategies to overcome such resilient microbes. Hence, novel antibiotic delivery systems are in high demand. Nanotechnology has attracted considerable interest due to their favored physicochemical properties, drug targeting efficiency, enhanced uptake, and biodistribution. The present review focuses on the recent applications of organic (liposomes, lipid-based nanoparticles, polymeric micelles, and polymeric nanoparticles), and inorganic (silver, silica, magnetic, zinc oxide (ZnO), cobalt, selenium, and cadmium) nanosystems in the domain of antibacterial delivery. We provide a concise description of the characteristics of each system that render it suitable as an antibacterial delivery agent. We also highlight the recent promising innovations used to overcome antibacterial resistance, including the use of lipid polymer nanoparticles, nonlamellar liquid crystalline nanoparticles, anti-microbial oligonucleotides, smart responsive materials, cationic peptides, and natural compounds. We further discuss the applications of antimicrobial photodynamic therapy, combination drug therapy, nano antibiotic strategy, and phage therapy, and their impact on evading antibacterial resistance. Finally, we report on the formulations that made their way towards clinical application.
Collapse
Affiliation(s)
- Nermin E. Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (N.E.E.); (A.A.)
| | - Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (N.E.E.); (A.A.)
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Sahar B. Hassan
- Department of Clinical pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Mahmoud M. Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University, Minia 61768, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy Sohag University, Sohag 82524, Egypt
| |
Collapse
|
14
|
Kabanov V, Ghosh S, Lovell JF, Heyne B. Singlet oxygen partition between the outer-, inner- and membrane-phases of photo/chemotherapeutic liposomes. Phys Chem Chem Phys 2019; 21:25054-25064. [DOI: 10.1039/c9cp05159g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, we developed a strategy to quantify the fraction of singlet oxygen lifetime spent in the three distinct local liposomal environments through the combination of direct and indirect singlet oxygen detection approaches.
Collapse
Affiliation(s)
| | - Sanjana Ghosh
- Department of Biomedical Engineering
- University at Buffalo
- Buffalo
- USA
| | | | - Belinda Heyne
- Department of Chemistry
- University of Calgary
- Calgary
- Canada
| |
Collapse
|
15
|
Goto Y, Ueda M, Sugikawa K, Yasuhara K, Ikeda A. Light-triggered hydrophilic drug release from liposomes through removal of a photolabile protecting group. RSC Adv 2018; 9:166-171. [PMID: 35521599 PMCID: PMC9059325 DOI: 10.1039/c8ra08584f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 11/25/2022] Open
Abstract
The antibiotic penicillin G cannot be completely incorporated into hydrophobic lipid-membranes owing to its hydrophilicity. Through modification with a hydrophobic and photolabile protecting group, penicillin G was effectively incorporated into liposomes and released by photoirradiation at 365 nm. Penicillin G as an antibiotic was released from liposomes by increase of hydrophilicity by photocleavage of a hydrophobic protecting group.![]()
Collapse
Affiliation(s)
- Yuya Goto
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan
| | - Masafumi Ueda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan.,School of Science, Kitasato University 1-15-1 Kitasato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Kouta Sugikawa
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan
| | - Kazuma Yasuhara
- Graduate School of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Atsushi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan
| |
Collapse
|