1
|
Gutierrez-Rangel PC, Mayolo-Deloisa K, Torres-Acosta MA. Decisional tool development and application for techno-economic analysis of fungal laccase production. BIORESOURCE TECHNOLOGY 2024; 402:130781. [PMID: 38701986 DOI: 10.1016/j.biortech.2024.130781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Textile and medical effluents causing bioaccumulation and biomagnification have been successfully biodegraded by fungal laccases. Here, a decision-making tool was developed and applied to evaluate 45 different laccase production strategies which determined the best potential source from a techno-economical perspective. Laccase production cost was calculated with a fixed output of 109 enzymatic units per batch (USD$per109U) and a sensitivity analysis was performed. Results indicate that optimization of enzymatic kinetics for each organism is essential to avoid exceeding the fermentation time point at which production titer reaches its peak and, therefore, higher production costs. Overall, the most cost-effective laccase-producing strategy was obtained when using Pseudolagarobasidium acaciicola with base production cost of USD $42.46 per 109 U. This works serves as platform for decision-making to find the optimal laccase production strategy based on techno-economic parameters.
Collapse
Affiliation(s)
- Paola C Gutierrez-Rangel
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
| | - Mario A Torres-Acosta
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., Mexico; The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
2
|
Sun YN, Chen WW, Yao SJ, Lin DQ. Model-assisted process development, characterization and design of continuous chromatography for antibody separation. J Chromatogr A 2023; 1707:464302. [PMID: 37607430 DOI: 10.1016/j.chroma.2023.464302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Continuous manufacturing in monoclonal antibody production has generated increased interest due to its consistent quality, high productivity, high equipment utilization, and low cost. One of the major challenges in realizing continuous biological manufacturing lies in implementing continuous chromatography. Given the complex operation mode and various operation parameters, it is challenging to develop a continuous process. Due to the process parameters being mainly determined by the breakthrough curves and elution behaviors, chromatographic modeling has gradually been used to assist in process development and characterization. Model-assisted approaches could realize multi-parameter interaction investigation and multi-objective optimization by integrating continuous process models. These approaches could reduce time and resource consumption while achieving a comprehensive and systematic understanding of the process. This paper reviews the application of modeling tools in continuous chromatography process development, characterization and design. Model-assisted process development approaches for continuous capture and polishing steps are introduced and summarized. The challenges and potential of model-assisted process characterization are discussed, emphasizing the need for further research on the design space determination strategy and parameter robustness analysis method. Additionally, some model applications for process design were highlighted to promote the establishment of the process optimization and process simulation platform.
Collapse
Affiliation(s)
- Yan-Na Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wu-Wei Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Oh TH, Park HM, Kim JW, Lee JM. Integration of Reinforcement Learning and Model Predictive Control to Optimize Semi‐batch Bioreactor. AIChE J 2022. [DOI: 10.1002/aic.17658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Tae Hoon Oh
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University Seoul Republic of Korea
| | - Hyun Min Park
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University Seoul Republic of Korea
| | - Jong Woo Kim
- Bioprocess Engineering Technische Universität Berlin Berlin Germany
| | - Jong Min Lee
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University Seoul Republic of Korea
| |
Collapse
|
4
|
Enablers of continuous processing of biotherapeutic products. Trends Biotechnol 2022; 40:804-815. [PMID: 35034769 DOI: 10.1016/j.tibtech.2021.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022]
Abstract
The benefits of continuous processing over batch manufacturing are widely acknowledged across the biopharmaceutical industry, primary of which are higher productivity and greater consistency in product quality. Furthermore, the reduced equipment and facility footprint lead to significantly lower capital costs. Technology enablers have a major role in this migration from batch to continuous processing. In this review, we highlight the various enablers that are facilitating adoption of continuous upstream and downstream bioprocessing. This includes new bioreactors and cell retention devices for upstream operations, and on-column and continuous flow refolding, novel continuous chromatography, and single-pass filtration systems for downstream processes. We also elucidate the significant roles of process integration and control as well as of data analytics in these processes.
Collapse
|
5
|
McNulty MJ, Nandi S, McDonald KA. Technoeconomic Modeling and Simulation for Plant-Based Manufacturing of Recombinant Proteins. Methods Mol Biol 2022; 2480:159-189. [PMID: 35616864 DOI: 10.1007/978-1-0716-2241-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Technoeconomic modeling and simulation is a critical step in defining a manufacturing process for evaluation of commercial viability and to focus experimental process research and development efforts. Technoeconomic analysis (TEA) is increasingly demanded alongside scientific innovation by both public and private funding agencies to maximize efficiency of resource allocation. It is particularly important for plant-based manufacturing, and other nontraditional recombinant protein production platforms, to explicitly demonstrate the manufacturing potential and to identify critical technical and economic challenges through robust technoeconomic analysis. In addition, in silico process modeling and TEA of scaled biomanufacturing facilities allows rapid evaluation of the impacts of process and economic changes on capital expenditures (CAPEX, also sometimes referred to as total capital investment), operational expenditures (OPEX, also known as total manufacturing costs or total production costs), cost of goods sold (COGS, also known as unit production costs), and profitability metrics such as net present value (NPV) and discounted cash flow rate of return (DCROR, also known as internal rate of return or IRR). These models can also be used to assess environmental, health, and safety impact of a designed biomanufacturing facility to evaluate its sustainability and environmental-friendliness. Here we describe a general method for performing technoeconomic modeling and simulation for and environmental assessment of plant-based manufacturing of recombinant proteins.
Collapse
Affiliation(s)
- Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA, USA
- Global HealthShare Initiative, University of California, Davis, CA, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA, USA.
- Global HealthShare Initiative, University of California, Davis, CA, USA.
| |
Collapse
|
6
|
Hole G, Hole AS, McFalone-Shaw I. Digitalization in pharmaceutical industry: What to focus on under the digital implementation process? Int J Pharm X 2021; 3:100095. [PMID: 34712948 PMCID: PMC8528719 DOI: 10.1016/j.ijpx.2021.100095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Digitalization of any manufacture industry is a key step in any progress of the production process. The process of digitalization includes both increased use of robotics, automatization solutions and computerization, thereby allowing to reduce costs, to improve efficiency and productivity, and to be flexible to changes. Pharmaceutical Industry (PI) has however been resistant to digitalization, mainly due to fair experience and complexity of the entailed development and manufacture processes. Nevertheless, there is a clear need to digitalize PI as the demand in both traditional and new drugs is constantly growing. Contract Development Manufacture Organizations (CDMOs) have a special digitalizing challenge. Digitalization of PI, and CDMO precisely, should be tightly related to the main aspects of Good Manufacture Practice (GMP), and, to succeed in PI digitalizing requires constant focus on GMP. Close collaboration with constantly changing stakeholders is another important factor which should be in focus during digitalization of CDMO. This paper represents an overview over the main aspects of CDMO digitalization and discusses both the opportunities and challenges of the process, focusing on the practical solutions for successive digital implementation.
Collapse
Key Words
- AIDS, Acquired Immune Deficiency Syndrome
- CDMO, Contract Development and Manufacturing Organization
- Contract development manufacture organization
- Digitalization
- EMA, European Medicines Agency
- EU, European Union
- FDA, Food and Drug Administration
- GMP, Good Manufacturing Practice
- ITA., International Trade Administration
- MHRA, Medicines and Healthcare Products Regulatory Agency
- PAI, Pre-Approval Inspections
- PI, Pharmaceutical Industry
- Pharmaceutical industry
- Process improvements
- TDM, Traditional Drug Manufacturing
- USD, United States Dollars
Collapse
Affiliation(s)
- Glenn Hole
- Molde University College, Molde and Procuratio Consulting, Drammen, Norway
| | | | - Ian McFalone-Shaw
- Molde University College, Molde and Procuratio Consulting, Drammen, Norway
| |
Collapse
|
7
|
Badr S, Okamura K, Takahashi N, Ubbenjans V, Shirahata H, Sugiyama H. Integrated design of biopharmaceutical manufacturing processes: Operation modes and process configurations for monoclonal antibody production. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107422] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Gränicher G, Babakhani M, Göbel S, Jordan I, Marichal-Gallardo P, Genzel Y, Reichl U. A high cell density perfusion process for Modified Vaccinia virus Ankara production: Process integration with inline DNA digestion and cost analysis. Biotechnol Bioeng 2021; 118:4720-4734. [PMID: 34506646 DOI: 10.1002/bit.27937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/10/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022]
Abstract
By integrating continuous cell cultures with continuous purification methods, process yields and product quality attributes have been improved over the last 10 years for recombinant protein production. However, for the production of viral vectors such as Modified Vaccinia virus Ankara (MVA), no such studies have been reported although there is an increasing need to meet the requirements for a rising number of clinical trials against infectious or neoplastic diseases. Here, we present for the first time a scalable suspension cell (AGE1.CR.pIX cells) culture-based perfusion process in bioreactors integrating continuous virus harvesting through an acoustic settler with semi-continuous chromatographic purification. This allowed obtaining purified MVA particles with a space-time yield more than 600% higher for the integrated perfusion process (1.05 × 1011 TCID50 /Lbioreactor /day) compared to the integrated batch process. Without further optimization, purification by membrane-based steric exclusion chromatography resulted in an overall product recovery of 50.5%. To decrease the level of host cell DNA before chromatography, a novel inline continuous DNA digestion step was integrated into the process train. A detailed cost analysis comparing integrated production in batch versus production in perfusion mode showed that the cost per dose for MVA was reduced by nearly one-third using this intensified small-scale process.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Masoud Babakhani
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair for Bioprocess Engineering, Faculty of Process- and Systems Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sven Göbel
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Institute of Biochemical Engineering, Faculty 4 - Energy-, Process- and Bio-Engineering, University of Stuttgart, Stuttgart, Germany
| | | | - Pavel Marichal-Gallardo
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair for Bioprocess Engineering, Faculty of Process- and Systems Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
9
|
Dryden WA, Larsen LM, Britt DW, Smith MT. Technical and economic considerations of cell culture harvest and clarification technologies. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Gränicher G, Tapia F, Behrendt I, Jordan I, Genzel Y, Reichl U. Production of Modified Vaccinia Ankara Virus by Intensified Cell Cultures: A Comparison of Platform Technologies for Viral Vector Production. Biotechnol J 2021; 16:e2000024. [PMID: 32762152 PMCID: PMC7435511 DOI: 10.1002/biot.202000024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Modified Vaccinia Ankara (MVA) virus is a promising vector for vaccination against various challenging pathogens or the treatment of some types of cancers, requiring a high amount of virions per dose for vaccination and gene therapy. Upstream process intensification combining perfusion technologies, the avian suspension cell line AGE1.CR.pIX and the virus strain MVA-CR19 is an option to obtain very high MVA yields. Here the authors compare different options for cell retention in perfusion mode using conventional stirred-tank bioreactors. Furthermore, the authors study hollow-fiber bioreactors and an orbital-shaken bioreactor in perfusion mode, both available for single-use. Productivity for the virus strain MVA-CR19 is compared to results from batch and continuous production reported in literature. The results demonstrate that cell retention devices are only required to maximize cell concentration but not for continuous harvesting. Using a stirred-tank bioreactor, a perfusion strategy with working volume expansion after virus infection results in the highest yields. Overall, infectious MVA virus titers of 2.1-16.5 × 109 virions/mL are achieved in these intensified processes. Taken together, the study shows a novel perspective on high-yield MVA virus production in conventional bioreactor systems linked to various cell retention devices and addresses options for process intensification including fully single-use perfusion platforms.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Felipe Tapia
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Ilona Behrendt
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
- Chair for Bioprocess EngineeringOtto‐von‐Guericke‐University MagdeburgUniversitätsplatz 2Magdeburg39106Germany
| |
Collapse
|
11
|
Digital Twins in Pharmaceutical and Biopharmaceutical Manufacturing: A Literature Review. Processes (Basel) 2020. [DOI: 10.3390/pr8091088] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development and application of emerging technologies of Industry 4.0 enable the realization of digital twins (DT), which facilitates the transformation of the manufacturing sector to a more agile and intelligent one. DTs are virtual constructs of physical systems that mirror the behavior and dynamics of such physical systems. A fully developed DT consists of physical components, virtual components, and information communications between the two. Integrated DTs are being applied in various processes and product industries. Although the pharmaceutical industry has evolved recently to adopt Quality-by-Design (QbD) initiatives and is undergoing a paradigm shift of digitalization to embrace Industry 4.0, there has not been a full DT application in pharmaceutical manufacturing. Therefore, there is a critical need to examine the progress of the pharmaceutical industry towards implementing DT solutions. The aim of this narrative literature review is to give an overview of the current status of DT development and its application in pharmaceutical and biopharmaceutical manufacturing. State-of-the-art Process Analytical Technology (PAT) developments, process modeling approaches, and data integration studies are reviewed. Challenges and opportunities for future research in this field are also discussed.
Collapse
|