1
|
Garzón AG, Veras FF, Brandelli A, Drago SR. Bio-functional and prebiotics properties of products based on whole grain sorghum fermented with lactic acid bacteria. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2971-2979. [PMID: 38041655 DOI: 10.1002/jsfa.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Products fermented with lactic acid bacteria based on whole grain flours of red or white sorghum (Sorghum bicolor (L.) Moench) added with malted sorghum flour, or with skim milk (SM) were developed. Composition, protein amino acid profile, total acidity, pH, prebiotic potential, and bio-functional properties after simulation of gastrointestinal digestion were evaluated. RESULTS In all cases, a pH of 4.5 was obtained in approximately 4.5 h. The products added with SM presented higher acidity. Products made only with sorghum presented higher total dietary fiber, but lower protein content than products with added SM, the last ones having higher lysine content. All products exhibited prebiotic potential, white sorghum being a better ingredient to promote the growth of probiotic bacteria. The addition of malted sorghum or SM significantly increased the bio-functional properties of the products: the sorghum fermented products added with SM presented the highest antioxidant (ABTS•+ inhibition, 4.7 ± 0.2 mM Trolox), antihypertensive (Angiotensin converting enzyme-I inhibition, 57.3 ± 0.5%) and antidiabetogenic (dipeptidyl-peptidase IV inhibition, 31.3 ± 2.1%) activities, while the products added with malted sorghum presented the highest antioxidant (reducing power, 1.6 ± 0.1 mg ascorbic acid equivalent/mL) and antidiabetogenic (α-amylase inhibition, 38.1 ± 0.9%) activities. CONCLUSION The fermented whole grain sorghum-based products could be commercially exploited by the food industry to expand the offer of the three high-growth markets: gluten-free products, plant-based products (products without SM), and functional foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonela G Garzón
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, Santa Fe, Argentina
| | - Flávio Fonseca Veras
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Adriano Brandelli
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Silvina R Drago
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, Santa Fe, Argentina
| |
Collapse
|
2
|
Crament TC, Arendsen K, Rose SH, Jansen T. Cultivation of recombinant Aspergillus niger strains on dairy whey as a carbohydrate source. J Ind Microbiol Biotechnol 2024; 51:kuae007. [PMID: 38299783 PMCID: PMC10863410 DOI: 10.1093/jimb/kuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
Agricultural waste valorisation provides a sustainable solution to waste management, and combining waste utilisation with commodity production allows for responsible production processes. Recombinant Aspergillus niger D15 strains expressing fungal endoglucanases (Trichoderma reesei eg1 and eg2 and Aspergillus carneus aceg) were evaluated for their ability to utilise lactose as a carbon source to determine whether dairy waste could be used as a feedstock for enzyme production. The recombinant A. niger D15[eg1]PyrG, D15[eg2]PyrG, and D15[aceg]PyrG strains produced maximum endoglucanase activities of 34, 54, and 34 U/mL, respectively, on lactose and 23, 27, and 22 U/mL, respectively, on whey. The A. niger D15[eg2]PyrG strain was used to optimise the whey medium. Maximum endoglucanase activity of 46 U/mL was produced on 10% whey medium containing 0.6% NaNO3. The results obtained indicate that dairy whey can be utilised as a feedstock for recombinant enzyme production. However, variations in enzyme activities were observed and require further investigation.
Collapse
Affiliation(s)
- Teagan C Crament
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Kayline Arendsen
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Trudy Jansen
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
3
|
Balasubramanian VK, Muthuramalingam JB, Chen YP, Chou JY. Recent trends in lactic acid-producing microorganisms through microbial fermentation for the synthesis of polylactic acid. Arch Microbiol 2023; 206:31. [PMID: 38127148 DOI: 10.1007/s00203-023-03745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Polylactic acid (PLA) is a range of unique bioplastics that are bio-based and biodegradable. PLA is currently driving market expansion for lactic acid (LA) due to its high demand as a building block in production. One of the most practical and environmentally benign techniques for synthesising PLA is through enzymatic polymerisation of microbial LA monomers. However, microbial LA fermentation does have some limitations. Firstly, it requires the use of a nutritionally rich medium. Secondly, LA production can be disrupted by bacteriophage infection or other microorganisms. Lastly, the yield can be low due to the formation of by-products through heterofermentative pathway. Considering the potential use of PLA as a replacement for conventional petrochemical-based polymers in industrial applications, researchers are focused on exploring the diversity of LA-producing microorganisms from various niches. Their goal is to study the functional properties of these microorganisms and their ability to produce industrially valuable metabolites. This review highlights the advantages and disadvantages of lactic acid-producing microorganisms used in microbial fermentation for PLA synthesis.
Collapse
Affiliation(s)
- Vignesh Kumar Balasubramanian
- Department of Botany, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
- Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan
| | | | - Yen-Po Chen
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, South Dist., Taichung City, 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan.
| |
Collapse
|
4
|
Hameed A, Anwar MJ, Perveen S, Amir M, Naeem I, Imran M, Hussain M, Ahmad I, Afzal MI, Inayat S, Awuchi CG. Functional, industrial and therapeutic applications of dairy waste materials. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023; 26:1470-1496. [DOI: 10.1080/10942912.2023.2213854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2024]
Affiliation(s)
- Aneela Hameed
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Saima Perveen
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Amir
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Iqra Naeem
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Imran
- Department of food science and technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ishtiaque Ahmad
- Department of Dairy Technology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Muhamad Inam Afzal
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Saima Inayat
- Department of Dairy Technology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | | |
Collapse
|
5
|
O'Donoghue LT, Murphy EG. Nondairy food applications of whey and milk permeates: Direct and indirect uses. Compr Rev Food Sci Food Saf 2023; 22:2652-2677. [PMID: 37070222 DOI: 10.1111/1541-4337.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
Permeates are generated in the dairy industry as byproducts from the production of high-protein products (e.g., whey or milk protein isolates and concentrates). Traditionally, permeate was disposed of as waste or used in animal feed, but with the recent move toward a "zero waste" economy, these streams are being recognized for their potential use as ingredients, or as raw materials for the production of value-added products. Permeates can be added directly into foods such as baked goods, meats, and soups, for use as sucrose or sodium replacers, or can be used in the production of prebiotic drinks or sports beverages. In-direct applications generally utilize the lactose present in permeate for the production of higher value lactose derivatives, such as lactic acid, or prebiotic carbohydrates such as lactulose. However, the impurities present, short shelf life, and difficulty handling these streams can present challenges for manufacturers and hinder the efficiency of downstream processes, especially compared to pure lactose solutions. In addition, the majority of these applications are still in the research stage and the economic feasibility of each application still needs to be investigated. This review will discuss the wide variety of nondairy, food-based applications of milk and whey permeates, with particular focus on the advantages and disadvantages associated with each application and the suitability of different permeate types (i.e., milk, acid, or sweet whey).
Collapse
Affiliation(s)
| | - Eoin G Murphy
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
6
|
Lech M, Labus K. The methods of brewers’ spent grain treatment towards the recovery of valuable ingredients contained therein and comprehensive management of its residues. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Sanusi IA, Suinyuy TN, Kana GEB. Impact of nanoparticle inclusion on bioethanol production process kinetic and inhibitor profile. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00585. [PMID: 33511040 PMCID: PMC7817428 DOI: 10.1016/j.btre.2021.e00585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/08/2020] [Accepted: 12/31/2020] [Indexed: 01/06/2023]
Abstract
NiO nanoparticle (NP) inclusion enhanced bioethanol production up to 59.96 %. Band energy gap impact NP catalytic performance in bioethanol production. NiO nanoparticle biocatalyst improved bioethanol productivity by 145 %. Modified Gompertz model was used to describe ethanol production with NP inclusion. Metallic NiO nanoparticles significantly reduced acetic acid concentration by 110 %.
This study examines the effects of nanoparticle inclusion in instantaneous saccharification and fermentation (NIISF) of waste potato peels. The effect of nanoparticle inclusion on the fermentation process was investigated at different stages which were: pre-treatment, liquefaction, saccharification and fermentation. Inclusion of NiO NPs at the pre-treatment stage gave a 1.60-fold increase and 2.10-fold reduction in bioethanol and acetic acid concentration respectively. Kinetic data on the bioethanol production fit the modified Gompertz model (R 2 > 0.98). The lowest production lag time (t L) of 1.56 h, and highest potential bioethanol concentration (P m) of 32 g/L were achieved with NiO NPs inclusion at different process stages; the liquefaction stage and the pre-treatment phase, respectively. Elevated bioethanol yield, coupled with substantial reduction in process inhibitors in the NIISF processes, demonstrated the significance of point of nanobiocatalysts inclusion for the scale-up development of bioethanol production from potato peels.
Collapse
Key Words
- ATP, Adenosine triphosphate
- Band energy gap
- Bioethanol
- EDS, Energy dispersive spectrophotometric
- EDX, Energy-dispersive X-ray spectroscopy
- GC–MS, Gas chromatography-Mass spectrometry
- HMF, 5-Hydroxymethyl Furfural
- ISF, Instant saccharification and fermentation
- Inhibitor profile
- NPs, Nanoparticles
- NSLIS, Nano + SATP + Liquefaction + SS + No Fermentation
- NSLISF, Nano + SATP + liquefaction + ISF
- Nanoparticles
- ORP, Oxidation–reduction potential
- SATP, Soaking assisted thermal pre-treatment
- SEM, Scanning electron microscopy
- SLIS, SATP + Liquefaction + SS + No Fermentation
- SLISF, SATP + Liquefaction + ISF
- SLNISF, SATP + Liquefaction + Nano + ISF
- SNLISF, SATP + Nano + Liquefaction + ISF
- SPA, Surface Plasmon Absorption
- SPR, Surface plasmon resonance
- Saccharomyces cerevisiae
- TEM, Transmission electron microscopy
- UV–vis, Ultraviolent visible
- VICs, Volatile inhibitory compounds
- wt%, Weight percent
Collapse
Affiliation(s)
- Isaac A Sanusi
- Discipline of Microbiology, Biotechnology Cluster, University of KwaZulu-Natal, Pietermaritzburg Campus, South Africa
| | - Terence N Suinyuy
- School of Biology and Environmental Sciences, University of Mpumalanga, Mbombela, South Africa
| | - Gueguim E B Kana
- Discipline of Microbiology, Biotechnology Cluster, University of KwaZulu-Natal, Pietermaritzburg Campus, South Africa
| |
Collapse
|
8
|
A Fructan Sucrase Secreted Extracellular and Purified in One-Step by Gram-Positive Enhancer Matrix Particles. Processes (Basel) 2021. [DOI: 10.3390/pr9010095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fructan sucrase is a kind of biological enzyme that catalyzes the synthesis of fructan, and fructan is a polysaccharide product with important industrial application value. In this study, the Fructan sucrase gene of Bacillus subtilis was cloned to plasmid PET-28A-ACMA-Z, and three clones were obtained after the transformation of Escherichia coli BL21, namely BS-FF, BSO, and BS. The clones BS-FF and BSO secreted the recombinant enzymes outside the cells, while the clone BS expressed them inside the cells. The induction experiment results showed that the optimum IPTG concentration in the medium was 0.5 mM and 1.0 mM for clones BS-FF and BSO, respectively, while the incubation conditions were at 28 °C for 8 h. The recombinant fructan sucrase was purified one step using a material called GEM particles. The results indicated that 95.25% of fructan sucrase expressed by the clone BS-FF could be secreted into the extracellular area, and even 98.78% by the clone BSO. With the above purification system, the receiving rate of the recombinant enzyme for clones BS-FF and BSO was 97.70% and 84.99%, respectively. As for the bioactivity of recombinant fructan sucrase, the optimum temperature and pH were 50 °C and 5.6, respectively. The Km and Vmax of it were 33.96 g/L and 0.63 g/(L·min), respectively. The engineered strains with the high extracellular secretion of fructan sucrase were constructed, and a one-step method for the purification of the recombinant enzyme was established. The results might provide a novel selection for the enzymatic production of fructan on a large scale.
Collapse
|
9
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|