1
|
Jiang Y, Ye J, Hu Y, Zhang J, Li W, Zhou X, Yu M, Yu Y, Yang J, Yang W, Jiang J, Cui J, Hu Y. Extraction and Synthesis of Typical Carotenoids: Lycopene, β-Carotene, and Astaxanthin. Molecules 2024; 29:4549. [PMID: 39407479 PMCID: PMC11478001 DOI: 10.3390/molecules29194549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/20/2024] Open
Abstract
Carotenoids are tetraterpene compounds acting as precursors to vitamin A, with functions that include protecting eyesight, enhancing immunity, promoting cell growth and differentiation, and providing antioxidative benefits. Lycopene, β-carotene, and astaxanthin are particularly critical for health and have diverse applications in food, health products, and medicine. However, natural carotenoids are encased within cell structures, necessitating mechanical methods to disrupt the cell wall for their extraction and purification-a process often influenced by environmental conditions. Thus, improving the efficiency of carotenoid extraction from natural resources is of great interest. This review delves into the research progress made on the extraction processes, structures, and biological functions of carotenoids, focusing on lycopene, β-carotene, and astaxanthin. Traditional extraction methods primarily involve organic solvent-assisted mechanical crushing. With deeper research and technological advancements, more environmentally friendly solvents, advanced machinery, and suitable methods are being employed to enhance the extraction and purification of carotenoids. These improvements have significantly increased extraction efficiency, reduced preparation time, and lowered production costs, laying the groundwork for new carotenoid product developments.
Collapse
Affiliation(s)
- Yuxuan Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Jingyi Ye
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Yadong Hu
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Investment Co., Ltd., Nanjing 210019, China; (Y.H.); (X.Z.)
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Wenhui Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Xinghu Zhou
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Investment Co., Ltd., Nanjing 210019, China; (Y.H.); (X.Z.)
| | - Mingzhou Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Yiyang Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Jingwei Yang
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Ministry of Natural Resources, Nanjing 210006, China;
| | - Wenge Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China;
| | - Jinchi Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Jie Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Yonghong Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| |
Collapse
|
2
|
Surmanidze N, Vanidze M, Djafaridze I, Davitadze R, Qarcivadze I, Khakhutaishvili M, Kalandia A. Optimization of the method of ultrasonic extraction of lycopene with a green extract from the fruit of Elaeagnus umbellata, common in Western Georgia. Food Sci Nutr 2024; 12:3593-3601. [PMID: 38726431 PMCID: PMC11077213 DOI: 10.1002/fsn3.4030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 05/12/2024] Open
Abstract
The study determined the content of lycopene in the fruits of the Elaeagnus umbellata (35.25-60.21 mg/100 g), common at different heights above sea level in Western Georgia. For the effective extraction of lycopene as a biologically active substance, the optimal conditions for ultrasonic extraction were selected: sunflower oil was used as a "green solvent"; the ratio of solid mass and solvent was 1:50; temperature 30°C; ultrasound amplitude 40%; power 85 W; and extraction time 10 min. FTIR spectra revealed the characteristic functional groups of lycopene exhibiting two characteristic peaks at 2920 and 2950 cm-1. To explore the effect of lycopene on oil quality, the acid value, peroxide value, and p-anisidine were determined in each oil sample. The antioxidant determination by inhibition of DPPH radicals showed significant differences in native oils and oils with lycopene.
Collapse
Affiliation(s)
- Nona Surmanidze
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| | - Maia Vanidze
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| | - Indira Djafaridze
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| | - Ruslan Davitadze
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| | - Inga Qarcivadze
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| | - Meri Khakhutaishvili
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| | - Aleko Kalandia
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| |
Collapse
|
3
|
Yu L, Li F, Ni J, Qin X, Lai J, Su X, Li Z, Zhang M. UV-ARTP compound mutagenesis breeding improves macrolactins production of Bacillus siamensis and reveals metabolism changes by proteomic. J Biotechnol 2024; 381:36-48. [PMID: 38190850 DOI: 10.1016/j.jbiotec.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
Macrolactins are a type of compound with complex macrolide structure which mainly be obtained through microbiological fermentation now. They have excellent antifungal, antibacterial and antitumor activity. In order to improve macrolactins production, Bacillus siamensis YB304 was used as the research object, and a mutant Mut-K53 with stable genetic characters was selected by UV-ARTP compound mutagenesis. The yield of macrolactins was 156.46 mg/L, 3.95 times higher than original strain. The metabolic pathway changes and regulatory mechanism of macrolactins were analyzed by quantitative proteomics combined with parallel reaction monitoring. This study revealed that 1794 proteins were extracted from strain YB304 and strain Mut-K53, most of them were related to metabolism. After UV-ARTP compound mutagenesis treatment, the expression of 628 proteins were significantly changed, of which 299 proteins were significantly up-regulated. KEGG pathway analysis showed that differentially expression proteins mainly distributed in biological process, cellular component, and molecular function processing pathways. Such as utilization of carbon sources, glycolysis pathway, and amino acid metabolism pathway. Furthermore, key precursor substances such as acyl-CoA and amino acids of macrolactin biosynthesis are mostly up-regulated, which are one of the main reasons for increased production of macrolactin.This study will provide a new way to increase the yield of macrolactins through mutagenesis breeding and proteomics.
Collapse
Affiliation(s)
- Lian Yu
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Fei Li
- Guangxi Key Laboratory of Marine Environmental Science, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Jie Ni
- Department of Chemistry and Chemical, Guilin Normal College, Guilin 541199, China.
| | - Xianling Qin
- Guangxi Key Laboratory of Marine Environmental Science, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Junxiang Lai
- Guangxi Key Laboratory of Marine Environmental Science, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xinying Su
- Guangxi Key Laboratory of Marine Environmental Science, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhe Li
- Guangxi Key Laboratory of Marine Environmental Science, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Mengfei Zhang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
4
|
Zhang Q, Miao R, Feng R, Yan J, Wang T, Gan Y, Zhao J, Lin J, Gan B. Application of Atmospheric and Room-Temperature Plasma (ARTP) to Microbial Breeding. Curr Issues Mol Biol 2023; 45:6466-6484. [PMID: 37623227 PMCID: PMC10453651 DOI: 10.3390/cimb45080408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Atmospheric and room-temperature plasma (ARTP) is an efficient microbial mutagenesis method with broad application prospects. Compared to traditional methods, ARTP technology can more effectively induce DNA damage and generate stable mutant strains. It is characterized by its simplicity, cost-effectiveness, and avoidance of hazardous chemicals, presenting a vast potential for application. The ARTP technology is widely used in bacterial, fungal, and microalgal mutagenesis for increasing productivity and improving characteristics. In conclusion, ARTP technology holds significant promise in the field of microbial breeding. Through ARTP technology, we can create mutant strains with specific genetic traits and improved performance, thereby increasing yield, improving quality, and meeting market demands. The field of microbial breeding will witness further innovation and progress with continuous refinement and optimization of ARTP technology.
Collapse
Affiliation(s)
- Qin Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Tao Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Ying Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Jin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| |
Collapse
|
5
|
Wei X, Wang Y, Liu X, Hu Z, Qian J, Shi T, Wang Y, Ye C. Metabolic analysis of Schizochytrium sp. mutants with high EPA content achieved with ARTP mutagenesis screening. Bioprocess Biosyst Eng 2023; 46:893-901. [PMID: 37079130 DOI: 10.1007/s00449-023-02874-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Eicosapentaenoic acid (EPA) belonged to the ω-3 series of polyunsaturated fatty acids and had physiological functions lipid as regulating blood lipid and preventing cardiovascular diseases. Schizochytrium sp. was considered to be a potential industrial fermentation strain of EPA because of its fast growth, high oil content, and simple fatty acid composition. However, Schizochytrium sp. produced EPA with low production efficiency and a long synthesis path. This research aims to improve the yield of EPA in Schizochytrium sp. by ARTP mutagenesis and to reveal the mechanism of high-yield EPA through transcriptome analysis. ARTP mutagenesis screening yielded the mutant M12 that whereas the productivity of EPA increased 108% reaching 0.48 g/L, the total fatty acid concentration was 13.82 g/L with an increase of 13.7%. The transcriptomics revealed 2995 differentially expressed genes were identified between M12 and the wild-type strain and transcripts involved in carbohydrate, amino acid, energy, and lipid metabolism were up-regulated. Among them, the hexokinase (HK) and the phosphofructokinase genes (PFK), which can catalyze pyruvate to acetyl-CoA, were increased 2.23-fold and 1.78-fold. Glucose-6-phosphate dehydrogenase (G6PD) and glutamate dehydrogenase (GLDH), which can both generate NADPH, were increased by 1.67-fold and 3.11-fold. Furthermore, in the EPA synthesis module, the expression of 3-oxoacyl-[acyl-carrier protein] reductase(fabG) and carbonyl reductase 4 / 3-oxoacyl-[acyl-carrier protein] reductase beta subunit(CBR4), also up-regulated 1.11-fold and 2.67-fold. These may lead to increases in cell growth. The results provide an important reference for further research on promoting fatty acid and EPA accumulation in Schizochytrium sp.
Collapse
Affiliation(s)
- Xinyu Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yuzhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xiner Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Zijian Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Jinyi Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
6
|
Wang YH, Zhang RR, Yin Y, Tan GF, Wang GL, Liu H, Zhuang J, Zhang J, Zhuang FY, Xiong AS. Advances in engineering the production of the natural red pigment lycopene: A systematic review from a biotechnology perspective. J Adv Res 2023; 46:31-47. [PMID: 35753652 PMCID: PMC10105081 DOI: 10.1016/j.jare.2022.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Lycopene is a natural red compound with potent antioxidant activity that can be utilized both as pigment and as a raw material in functional food, and so possesses good commercial prospects. The biosynthetic pathway has already been documented, which provides the foundation for lycopene production using biotechnology. AIM OF REVIEW Although lycopene production has begun to take shape, there is still an urgent need to alleviate the yield of lycopene. Progress in this area can provide useful reference for metabolic engineering of lycopene production utilizing multiple approaches. KEY SCIENTIFIC CONCEPTS OF REVIEW Using conventional microbial fermentation approaches, biotechnologists have enhanced the yield of lycopene by selecting suitable host strains, utilizing various additives, and optimizing culture conditions. With the development of modern biotechnology, genetic engineering, protein engineering, and metabolic engineering have been applied for lycopene production. Extraction from natural plants is the main way for lycopene production at present. Based on the molecular mechanism of lycopene accumulation, the production of lycopene by plant bioreactor through genetic engineering has a good prospect. Here we summarized common strategies for optimizing lycopene production engineering from a biotechnology perspective, which are mainly carried out by microbial cultivation. We reviewed the challenges and limitations of this approach, summarized the critical aspects, and provided suggestions with the aim of potential future breakthroughs for lycopene production in plants.
Collapse
Affiliation(s)
- Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550025, China
| | - Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian Zhang
- College of Agriculture, Jilin Agricultural University, Changchun, Jilin 130118, China; Department of Biology, University of British Columbia, Okanagan, Kelowna, Canada
| | - Fei-Yun Zhuang
- Institute of Vegetable and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
7
|
Sun J, Li J, Yao L, Zheng Y, Yuan J, Wang D. UV-ARTP-DES compound mutagenesis breeding improves natamycin production of Streptomyces natalensis HW-2 and reveals transcriptional changes by RNA-seq. Food Sci Biotechnol 2023; 32:341-352. [PMID: 36778090 PMCID: PMC9905406 DOI: 10.1007/s10068-022-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022] Open
Abstract
Natamycin is widely used in food, medical and health, agriculture, and animal husbandry. In this study, Streptomyces natalensis HW-2 was used as the research object, and a mutant DES-26 with stable genetic characters was selected by UV-ARTP-DES compound mutation. The natamycin yield was 1.64 g/L, 86.36% higher than original strain. Differential expression genes were analyzed by transcriptomics, and results showed that 295 and 860 genes were significantly differentially expressed at fermentation for 48 h and 72 h. GO and KEGG analysis showed that compound mutagenesis had a significant impact on glycolysis, pentose phosphate, TCA cycle, fatty acid metabolism pathways, and several key enzyme genes in the pathways were up-regulated, and genes related to natamycin biosynthesis (pimB-pimI) and transcriptional regulator (pimR) were also up-regulated. qRT-PCR results confirmed that expression levels of these genes were consistent with transcriptional changes of RNA-Seq. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01191-z.
Collapse
Affiliation(s)
- Jianrui Sun
- College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, No. 263, Kaiyuan Ave., Luoyang, 471023 Henan China
| | - Jinglan Li
- College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, No. 263, Kaiyuan Ave., Luoyang, 471023 Henan China
| | - Linlin Yao
- College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, No. 263, Kaiyuan Ave., Luoyang, 471023 Henan China
| | - Yingying Zheng
- College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, No. 263, Kaiyuan Ave., Luoyang, 471023 Henan China
| | - Jiangfeng Yuan
- College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, No. 263, Kaiyuan Ave., Luoyang, 471023 Henan China
| | - Dahong Wang
- College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, No. 263, Kaiyuan Ave., Luoyang, 471023 Henan China
| |
Collapse
|
8
|
Rapid Screening of High-Yield Gellan Gum Mutants of Sphingomonas paucimobilis ATCC 31461 by Combining Atmospheric and Room Temperature Plasma Mutation with Near-Infrared Spectroscopy Monitoring. Foods 2022; 11:foods11244078. [PMID: 36553820 PMCID: PMC9777525 DOI: 10.3390/foods11244078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, an efficient mutagenesis and rapid screening method of high-yield gellan gum mutant by atmospheric and room temperature plasma (ARTP) treatment combined with Near-Infrared Spectroscopy (NIRS) was proposed. A NIRS model for the on-line detection of gellan gum yield was constructed by joint interval partial least squares (siPLS) regression on the basis of chemical determination and NIRS acquisition of gellan gum yield. Five genetically stable mutant strains were screened using the on-line NIRS detection of gellan gum yield in the fermentation from approximately 600 mutant strains induced by ARTP. Remarkably, compared with the original strain, the gellan gum yield of mutant strain 519 was 9.427 g/L (increased by 133.5%) under the optimal fermentation conditions, which was determined by single-factor and response surface optimization. Therefore, the method of ARTP mutation combined with the NIRS model can be used to screen high-yield mutant strains of gellan gum and other high-yield polysaccharide strains.
Collapse
|
9
|
Chen L, Liu X, Li C, Li H, Chen W, Li D. Transcriptome analyses reveal the DHA enhancement mechanism in Schizochytrium limacinum LD11 mutant. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Wang Q, Chen Y, Yang Q, Zhao J, Feng L, Wang M. SR5AL serves as a key regulatory gene in lycopene biosynthesis by Blakeslea trispora. Microb Cell Fact 2022; 21:126. [PMID: 35752808 PMCID: PMC9233402 DOI: 10.1186/s12934-022-01853-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trisporic acids are considered to be key regulators of carotenoid biosynthesis and sexual reproduction in zygomycetes, but the mechanisms underlying this regulation have not been fully elucidated. RESULTS In this study, the relationships between trisporic acids and lycopene synthesis were investigated in Blakeslea trispora. The lycopene concentration in single fermentation by the (-) strain with the addition of 24 μg/L trisporic acids was slightly higher than that observed in mated fermentation. After transcriptomic analysis, a steroid 5α-reductase-like gene, known as SR5AL in B. trispora, was first reported. 5α-Reductase inhibitors reduced lycopene biosynthesis and downregulated the expression of sex determination and carotenoid biosynthesis genes. Overexpression of the SR5AL gene upregulated these genes, regardless of whether trisporic acids were added. CONCLUSION These findings indicated that the SR5AL gene is a key gene associated with the response to trisporic acids.
Collapse
Affiliation(s)
- Qiang Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang, 453007, China
| | - Yulong Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China. .,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang, 453007, China.
| | - Jihong Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang, 453007, China
| | - Lingran Feng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Min Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
11
|
Xu H, Dai C, Tang Y, Xu X, Umego EC, He R, Ma H. The selective breeding and mutagenesis mechanism of high-yielding surfactin Bacillus subtilis strains with atmospheric and room temperature plasma. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1851-1861. [PMID: 34464473 DOI: 10.1002/jsfa.11521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Surfactin, a good biological surfactant, is derived from the metabolites of microorganisms. However, the ability of natural strains to produce surfactin is low, and so the presented study aimed to use a novel mutagenesis technology to increase their yields. RESULTS Atmospheric and room temperature plasma (ARTP) was used to conduct mutation breeding of Bacillus subtilis CICC 10721, and a mutant strain M45 with a higher surfactin yield of 34.2% and a stable subculture was screened out. From the fermentation kinetics study, it was found that the maximum cell dry weight, maximum growth rate and surfactin synthesis parameters of the mutant strain M45 were all greater than that of the original strain. Scanning electron microscope and laser scanning confocal microscope observations showed that the spore morphology changed after ARTP treating, and the intracellular Ca2+ concentration of the mutant increased. Genome resequencing analysis showed that 66 single nucleotide poymorphism non-synonymous mutation sites occurred in M45, and the identification results of the fermentation broth extract from M45 showed that it is composed of C12 -C16 surfactin. CONCLUSION ARTP mutagenesis was found to change the morphology of bacteria, membrane permeability and genes related to the synthesis and secretion of surfactin. The present study provides a basis for industrial production of surfactin and an understanding of the mutagenesis mechanism. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haining Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Yingxiu Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xueting Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ekene Christopher Umego
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science and Technology, University of Nigeria, Nsukka, Nigeria
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Amorim ADGN, Vasconcelos AG, Souza J, Oliveira A, Gullón B, de Souza de Almeida Leite JR, Pintado M. Bio-Availability, Anticancer Potential, and Chemical Data of Lycopene: An Overview and Technological Prospecting. Antioxidants (Basel) 2022; 11:antiox11020360. [PMID: 35204241 PMCID: PMC8868408 DOI: 10.3390/antiox11020360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of this review was to collect relevant chemical data about lycopene and its isomers, which can be extracted using different non-polar or polar aprotic solvents by SC-CO2 or biosynthesis as a friendly technique. Lycopene and other carotenoids can be identified and quantified by UV–Vis and HPLC using a C18 or C30 column, while their characterization is possible by UV–Vis, Fluorescence, FTIR, MS, NMR, and DSC assays. Among these techniques, the last four can compare lycopene isomers and identify cis or all-trans-lycopene. FTIR, MS, and NMR techniques are more suitable for the verification of the purity of lycopene extracts due to the signal complexity generated for each isomer, which enables identification by subtle differences. Additionally, some biological activities of lycopene isolated from red vegetables have already been confirmed, such as anti-inflammatory, antioxidant, and cytotoxic activity against cancer cells, probably by activating several pathways. The encapsulation of lycopene in nanoparticles demonstrated an improvement in oral delivery, and ex vivo assessments determined that these nanoparticles had better permeation and low cytotoxicity against human cells with enhanced permeation. These data suggest that lycopene has the potential to be applied in the food and pharmaceutical industries, as well as in cosmetic products.
Collapse
Affiliation(s)
- Adriany das Graças Nascimento Amorim
- Rede Nordeste de Biotecnologia, RENORBIO, Campus Ministro Petrônio Portela, Universidade Federal do Piauí, UFPI, Teresina 64049-550, PI, Brazil
- Correspondence: ; Tel.: +55-86-999-652-666
| | - Andreanne Gomes Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasilia 70190-900, DF, Brazil; (A.G.V.); (J.R.d.S.d.A.L.)
- Centro Universitário do Distrito Federal, UDF, Brasília 70390-045, DF, Brazil
- People&Science, Brasília 70340-908, DF, Brazil
| | - Jessica Souza
- Laboratório de Cultura de Célula do Delta, LCC Delta, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaiba 64202-020, PI, Brazil;
| | - Ana Oliveira
- Laboratório Associado, Centro de Biotecnologia e Química Fina, CBQF-ESB, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (A.O.); (M.P.)
| | - Beatriz Gullón
- Departamento de Ingeniería Química, Facultad de Ciencias, Campus Ourense, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain;
| | - José Roberto de Souza de Almeida Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasilia 70190-900, DF, Brazil; (A.G.V.); (J.R.d.S.d.A.L.)
| | - Manuela Pintado
- Laboratório Associado, Centro de Biotecnologia e Química Fina, CBQF-ESB, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (A.O.); (M.P.)
| |
Collapse
|
13
|
Dinger R, Lattermann C, Flitsch D, Fischer JP, Kosfeld U, Büchs J. Device for respiration activity measurement enables the determination of oxygen transfer rates of microbial cultures in shaken 96-deepwell microtiter plates. Biotechnol Bioeng 2021; 119:881-894. [PMID: 34951007 DOI: 10.1002/bit.28022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/02/2022]
Abstract
Mini-bioreactors with integrated online monitoring capabilities are well established in the early stages of process development. Mini-bioreactors fulfil the demand for high-throughput-applications and a simultaneous reduction of material costs and total experimental time. One of the most essential online monitored parameters is the oxygen transfer rate (OTR). OTR-monitoring allows fast characterization of bioprocesses and process transfer to larger scales. Currently, OTR-monitoring on a small-scale is limited to shake flasks and 48-well microtiter plates (MTP). Especially, 96-deepwell MTP are used for high-throughput-experiments during early-stage bioprocess development. However, a device for OTR monitoring in 96-deepwell MTP is still not available. To determine OTR values, the measurement of the gas composition in each well of a MTP is necessary. Therefore, a new micro(µ)-scale Transfer rate Online Measurement device (µTOM) was developed. The µTOM includes 96 parallel oxygen-sensitive sensors and a single robust sealing mechanism. Different organisms (Escherichia. coli, Hansenula polymorpha, and Ustilago maydis) were cultivated in the µTOM. The measurement precision for 96 parallel cultivations was 0.21 mmol·L-1·h-1 (pooled standard deviation). In total, a more than 15-fold increase in throughput and an up to a 50-fold decrease in media consumption, compared with the shake flask RAMOS-technology, was achieved using the µTOM for OTR-monitoring. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert Dinger
- RWTH Aachen University, Chair of Biochemical Engineering (AVT.BioVT), Forckenbeckstraße 51, 52074, Aachen, Germany
| | | | - David Flitsch
- PyroScience GmbH, Hubertusstraße 35, 52064, Aachen, Germany
| | - Jan P Fischer
- PyroScience GmbH, Hubertusstraße 35, 52064, Aachen, Germany
| | - Udo Kosfeld
- RWTH Aachen University, Chair of Biochemical Engineering (AVT.BioVT), Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jochen Büchs
- RWTH Aachen University, Chair of Biochemical Engineering (AVT.BioVT), Forckenbeckstraße 51, 52074, Aachen, Germany
| |
Collapse
|
14
|
Kubczak M, Szustka A, Rogalińska M. Molecular Targets of Natural Compounds with Anti-Cancer Properties. Int J Mol Sci 2021; 22:ijms222413659. [PMID: 34948455 PMCID: PMC8708931 DOI: 10.3390/ijms222413659] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death in humans. Despite rapid developments in diagnostic methods and therapies, metastasis and resistance to administrated drugs are the main obstacles to successful treatment. Therefore, the main challenge should be the diagnosis and design of optimal therapeutic strategies for patients to increase their chances of responding positively to treatment and increase their life expectancy. In many types of cancer, a deregulation of multiple pathways has been found. This includes disturbances in cellular metabolism, cell cycle, apoptosis, angiogenesis, or epigenetic modifications. Additionally, signals received from the microenvironment may significantly contribute to cancer development. Chemical agents obtained from natural sources seem to be very attractive alternatives to synthetic compounds. They can exhibit similar anti-cancer potential, usually with reduced side effects. It was reported that natural compounds obtained from fruits and vegetables, e.g., polyphenols, flavonoids, stilbenes, carotenoids and acetogenins, might be effective against cancer cells in vitro and in vivo. Several published results indicate the activity of natural compounds on protein expression by its influence on transcription factors. They could also be involved in alterations in cellular response, cell signaling and epigenetic modifications. Such natural components could be used in our diet for anti-cancer protection. In this review, the activities of natural compounds, including anti-cancer properties, are described. The influence of natural agents on cancer cell metabolism, proliferation, signal transduction and epigenetic modifications is highlighted.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
| | - Aleksandra Szustka
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
| | - Małgorzata Rogalińska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
- Correspondence:
| |
Collapse
|
15
|
Cao L, Gao Y, Wang XZ, Shu GY, Hu YN, Xie ZP, Cui W, Guo XP, Zhou X. A Series of Efficient Umbrella Modeling Strategies to Track Irradiation-Mutation Strains Improving Butyric Acid Production From the Pre-development Earlier Stage Point of View. Front Bioeng Biotechnol 2021; 9:609345. [PMID: 34222207 PMCID: PMC8242359 DOI: 10.3389/fbioe.2021.609345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridium tyrobutyricum (C. tyrobutyricum) is a fermentation strain used to produce butyric acid. A promising new biofuel, n-butanol, can be produced by catalysis of butyrate, which can be obtained through microbial fermentation. Butyric acid has various uses in food additives and flavor agents, antiseptic substances, drug formulations, and fragrances. Its use as a food flavoring has been approved by the European Union, and it has therefore been listed on the EU Lists of Flavorings. As butyric acid fermentation is a cost-efficient process, butyric acid is an attractive feedstock for various biofuels and food commercialization products. 12C6+ irradiation has advantages over conventional mutation methods for fermentation production due to its dosage conformity and excellent biological availability. Nevertheless, the effects of these heavy-ion irradiations on the specific productiveness of C. tyrobutyricum are still uncertain. We developed non-structured mathematical models to represent the heavy-ion irradiation of C. tyrobutyricum in biofermentation reactors. The kinetic models reflect various fermentation features of the mutants, including the mutant strain growth model, butyric acid formation model, and medium consumption model. The models were constructed based on the Markov chain Monte Carlo model and logistic regression. Models were verified using experimental data in response to different initial glucose concentrations (0-180 g/L). The parameters of fixed proposals are applied in the various fermentation stages. Predictions of these models were in accordance well with the results of fermentation assays. The maximum butyric acid production was 56.3 g/L. Our study provides reliable information for increasing butyric acid production and for evaluating the feasibility of using mutant strains of C. tyrobutyricum at the pre-development phase.
Collapse
Affiliation(s)
- Li Cao
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Zhen Wang
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Guang-Yuan Shu
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Ya-Nan Hu
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Zong-Ping Xie
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Wei Cui
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Xiao-Peng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Zhang Y, Chiu TY, Zhang JT, Wang SJ, Wang SW, Liu LY, Ping Z, Wang Y, Chen A, Zhang WW, Chen T, Wang Y, Shen Y. Systematical Engineering of Synthetic Yeast for Enhanced Production of Lycopene. Bioengineering (Basel) 2021; 8:bioengineering8010014. [PMID: 33477926 PMCID: PMC7833358 DOI: 10.3390/bioengineering8010014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/16/2022] Open
Abstract
Synthetic biology allows the re-engineering of biological systems and promotes the development of bioengineering to a whole new level, showing great potential in biomanufacturing. Here, in order to make the heterologous lycopene biosynthesis pathway compatible with the host strain YSy 200, we evolved YSy200 using a unique Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) system that is built in the Sc2.0 synthetic yeast. By inducing SCRaMbLE, we successfully identified a host strain YSy201 that can be served as a suitable host to maintain the heterologous lycopene biosynthesis pathway. Then, we optimized the lycopene biosynthesis pathway and further integrated into the rDNA arrays of YSy201 to increase its copy number. In combination with culturing condition optimization, we successfully screened out the final yeast strain YSy222, which showed a 129.5-fold increase of lycopene yield in comparison with its parental strain. Our work shows that, the strategy of combining the engineering efforts on both the lycopene biosynthesis pathway and the host strain can improve the compatibility between the heterologous pathway and the host strain, which can further effectively increase the yield of the target product.
Collapse
Affiliation(s)
- Yu Zhang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China;
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
| | - Tsan-Yu Chiu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Jin-Tao Zhang
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Shu-Jie Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Shu-Wen Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
| | - Long-Ying Liu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
| | - Zhi Ping
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Yong Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
| | - Ao Chen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
| | - Wen-Wei Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
| | - Tai Chen
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Yun Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
| | - Yue Shen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
- Correspondence:
| |
Collapse
|
17
|
Li M, Xia Q, Zhang H, Zhang R, Yang J. Metabolic Engineering of Different Microbial Hosts for Lycopene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14104-14122. [PMID: 33207118 DOI: 10.1021/acs.jafc.0c06020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a result of the extensive use of lycopene in a variety of fields, especially the dietary supplement and health food industries, the production of lycopene has attracted considerable interest. Lycopene can be obtained through extraction from vegetables and chemical synthesis. Alternatively, the microbial production of lycopene has been extensively researched in recent years. Various types of microbial hosts have been evaluated for their potential to accumulate a high level of lycopene. Metabolic engineering of the hosts and optimization of culture conditions are performed to enhance lycopene production. After years of research, great progress has been made in lycopene production. In this review, strategies used to improve lycopene production in different microbial hosts and the advantages and disadvantages of each microbial host are summarized. In addition, future perspectives of lycopene production in different microbial hosts are discussed.
Collapse
Affiliation(s)
- Meijie Li
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changchen Road, Qingdao, Shandong 266109, People's Republic of China
| | - Qingqing Xia
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changchen Road, Qingdao, Shandong 266109, People's Republic of China
| | - Haibo Zhang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 135 Songling Road, Qingdao, Shandong 266101, People's Republic of China
| | - Rubing Zhang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 135 Songling Road, Qingdao, Shandong 266101, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changchen Road, Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|