1
|
Kapasiawala M, Murray RM. Metabolic Perturbations to an Escherichia coli-based Cell-Free System Reveal a Trade-off between Transcription and Translation. ACS Synth Biol 2024; 13:3976-3990. [PMID: 39565716 DOI: 10.1021/acssynbio.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Cell-free transcription-translation (TX-TL) systems have been used for diverse applications, but their performance and scope are limited by variability and poor predictability. To understand the drivers of this variability, we explored the effects of metabolic perturbations to anEscherichia coli (E. coli) Rosetta2 TX-TL system. We targeted three classes of molecules: energy molecules, in the form of nucleotide triphosphates (NTPs); central carbon "fuel" molecules, which regenerate NTPs; and magnesium ions (Mg2+). Using malachite green mRNA aptamer (MG aptamer) and destabilized enhanced green fluorescent protein (deGFP) as transcriptional and translational readouts, respectively, we report the presence of a trade-off between optimizing total protein yield and optimizing total mRNA yield, as measured by integrating the area under the curve for mRNA time-course dynamics. We found that a system's position along the trade-off curve is strongly determined by Mg2+ concentration, fuel type and concentration, and cell lysate preparation and that variability can be reduced by modulating these components. Our results further suggest that the trade-off arises from limitations in translation regulation and inefficient energy regeneration. This work advances our understanding of the effects of fuel and energy metabolism on TX-TL in cell-free systems and lays a foundation for improving TX-TL performance, lifetime, standardization, and prediction.
Collapse
Affiliation(s)
- Manisha Kapasiawala
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Richard M Murray
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Schloßhauer JL, Tholen L, Körner A, Kubick S, Chatzopoulou S, Hönow A, Zemella A. Promoting the production of challenging proteins via induced expression in CHO cells and modified cell-free lysates harboring T7 RNA polymerase and mutant eIF2α. Synth Syst Biotechnol 2024; 9:416-424. [PMID: 38601208 PMCID: PMC11004649 DOI: 10.1016/j.synbio.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 03/16/2024] [Indexed: 04/12/2024] Open
Abstract
Chinese hamster ovary (CHO) cells are crucial in biopharmaceutical production due to their scalability and capacity for human-like post-translational modifications. However, toxic proteins and membrane proteins are often difficult-to-express in living cells. Alternatively, cell-free protein synthesis can be employed. This study explores innovative strategies for enhancing the production of challenging proteins through the modification of CHO cells by investigating both, cell-based and cell-free approaches. A major result in our study involves the integration of a mutant eIF2 translation initiation factor and T7 RNA polymerase into CHO cell lysates for cell-free protein synthesis. This resulted in elevated yields, while eliminating the necessity for exogenous additions during cell-free production, thereby substantially enhancing efficiency. Additionally, we explore the potential of the Rosa26 genomic site for the integration of T7 RNA polymerase and cell-based tetracycline-controlled protein expression. These findings provide promising advancements in bioproduction technologies, offering flexibility to switch between cell-free and cell-based protein production as needed.
Collapse
Affiliation(s)
- Jeffrey L. Schloßhauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
- Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
- Institute for Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Lena Tholen
- Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
| | - Alexander Körner
- Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus –Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Potsdam, Germany
- Institute for Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Sofia Chatzopoulou
- Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
| | - Anja Hönow
- New/era/mabs GmbH, August-Bebel-Str. 89, 14482, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
| |
Collapse
|
3
|
Free TJ, Talley JP, Hyer CD, Miller CJ, Griffitts JS, Bundy BC. Engineering the Signal Resolution of a Paper-Based Cell-Free Glutamine Biosensor with Genetic Engineering, Metabolic Engineering, and Process Optimization. SENSORS (BASEL, SWITZERLAND) 2024; 24:3073. [PMID: 38793927 PMCID: PMC11124800 DOI: 10.3390/s24103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Specialized cancer treatments have the potential to exploit glutamine dependence to increase patient survival rates. Glutamine diagnostics capable of tracking a patient's response to treatment would enable a personalized treatment dosage to optimize the tradeoff between treatment success and dangerous side effects. Current clinical glutamine testing requires sophisticated and expensive lab-based tests, which are not broadly available on a frequent, individualized basis. To address the need for a low-cost, portable glutamine diagnostic, this work engineers a cell-free glutamine biosensor to overcome assay background and signal-to-noise limitations evident in previously reported studies. The findings from this work culminate in the development of a shelf-stable, paper-based, colorimetric glutamine test with a high signal strength and a high signal-to-background ratio for dramatically improved signal resolution. While the engineered glutamine test is important progress towards improving the management of cancer and other health conditions, this work also expands the assay development field of the promising cell-free biosensing platform, which can facilitate the low-cost detection of a broad variety of target molecules with high clinical value.
Collapse
Affiliation(s)
- Tyler J. Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Joseph P. Talley
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Chad D. Hyer
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Catherine J. Miller
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Bradley C. Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
4
|
Lee SJ, Kim DM. Cell-Free Synthesis: Expediting Biomanufacturing of Chemical and Biological Molecules. Molecules 2024; 29:1878. [PMID: 38675698 PMCID: PMC11054211 DOI: 10.3390/molecules29081878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing demand for sustainable alternatives underscores the critical need for a shift away from traditional hydrocarbon-dependent processes. In this landscape, biomanufacturing emerges as a compelling solution, offering a pathway to produce essential chemical materials with significantly reduced environmental impacts. By utilizing engineered microorganisms and biomass as raw materials, biomanufacturing seeks to achieve a carbon-neutral footprint, effectively counteracting the carbon dioxide emissions associated with fossil fuel use. The efficiency and specificity of biocatalysts further contribute to lowering energy consumption and enhancing the sustainability of the production process. Within this context, cell-free synthesis emerges as a promising approach to accelerate the shift towards biomanufacturing. Operating with cellular machinery in a controlled environment, cell-free synthesis offers multiple advantages: it enables the rapid evaluation of biosynthetic pathways and optimization of the conditions for the synthesis of specific chemicals. It also holds potential as an on-demand platform for the production of personalized and specialized products. This review explores recent progress in cell-free synthesis, highlighting its potential to expedite the transformation of chemical processes into more sustainable biomanufacturing practices. We discuss how cell-free techniques not only accelerate the development of new bioproducts but also broaden the horizons for sustainable chemical production. Additionally, we address the challenges of scaling these technologies for commercial use and ensuring their affordability, which are critical for cell-free systems to meet the future demands of industries and fully realize their potential.
Collapse
Affiliation(s)
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-Ro, Daejeon 34134, Republic of Korea;
| |
Collapse
|
5
|
Melinek BJ, Tuck J, Probert P, Branton H, Bracewell DG. Designing of an extract production protocol for industrial application of cell-free protein synthesis technology: Building from a current best practice to a quality by design approach. ENGINEERING BIOLOGY 2023; 7:1-17. [PMID: 38094242 PMCID: PMC10715128 DOI: 10.1049/enb2.12029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 10/16/2024] Open
Abstract
Cell-Free Protein Synthesis (CFPS) has, over the past decade, seen a substantial increase in interest from both academia and industry. Applications range from fundamental research, through high-throughput screening to niche manufacture of therapeutic products. This review/perspective focuses on Quality Control in CFPS. The importance and difficulty of measuring the Raw Material Attributes (RMAs) of whole cell extract, such as constituent protein and metabolite concentrations, and of understanding and controlling these complicated enzymatic reactions is explored, for both centralised and distributed industrial production of biotherapeutics. It is suggested that a robust cell-free extract production process should produce cell extract of consistent quality; however, demonstrating this is challenging without a full understanding of the RMAs and their interaction with reaction conditions and product. Lack of technology transfer and knowledge sharing is identified as a key limiting factor in the development of CFPS. The article draws upon the experiences of industrial process specialists, discussions within the Future Targeted Healthcare Manufacturing Hub Specialist Working Groups and evidence drawn from various sources to identify sources of process variation and to propose an initial guide towards systematisation of CFPS process development and reporting. These proposals include the development of small scale screening tools, consistent reporting of selected process parameters and analytics and application of industrial thinking and manufacturability to protocol development.
Collapse
Affiliation(s)
| | - Jade Tuck
- CPIDarlingtonUK
- Merck KGaADarmstadtGermany
| | | | | | | |
Collapse
|
6
|
Fábrega MJ, Knödlseder N, Nevot G, Sanvicente M, Toloza L, Santos-Moreno J, Güell M. Establishing a Cell-Free Transcription-Translation Platform for Cutibacterium acnes to Prototype Engineered Metabolic and Synthetic Biology. ACS Biomater Sci Eng 2023; 9:5101-5110. [PMID: 34971313 PMCID: PMC10498419 DOI: 10.1021/acsbiomaterials.1c00894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the past few years, new bacterial-cell-free transcription-translation systems have emerged as potent and quick platforms for protein production as well as for prototyping of DNA regulatory elements, genetic circuits, and metabolic pathways. The Gram-positive commensal Cutibacterium acnes is one of the most abundant bacteria present in the human skin microbiome. However, it has recently been reported that some C. acnes phylotypes can be associated with common inflammatory skin conditions, such as acne vulgaris, whereas others seem to play a protective role, acting as possible "skin probiotics". This fact has made C. acnes become a bacterial model of interest for the cosmetic industry. In the present study we report for the first time the development and optimization of a C. acnes-based cell-free system (CFS) that is able to produce 85 μg/mL firefly luciferase. We highlight the importance of harvesting the bacterial pellet in mid log phase and maintaining CFS reactions at 30 °C and physiological pH to obtain the optimal yield. Additionally, a C. acnes promoter library was engineered to compare coupled in vitro TX-TL activities, and a temperature biosensor was tested, demonstrating the wide range of applications of this toolkit in the synthetic biology field.
Collapse
Affiliation(s)
- María-José Fábrega
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Nastassia Knödlseder
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Guillermo Nevot
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Marta Sanvicente
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Lorena Toloza
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Javier Santos-Moreno
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Marc Güell
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| |
Collapse
|
7
|
Li J, Li P, Liu Q, Li J, Qi H. Translation initiation consistency between in vivo and in vitro bacterial protein expression systems. Front Bioeng Biotechnol 2023; 11:1201580. [PMID: 37304134 PMCID: PMC10248181 DOI: 10.3389/fbioe.2023.1201580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
Strict on-demand control of protein synthesis is a crucial aspect of synthetic biology. The 5'-terminal untranslated region (5'-UTR) is an essential bacterial genetic element that can be designed for the regulation of translation initiation. However, there is insufficient systematical data on the consistency of 5'-UTR function among various bacterial cells and in vitro protein synthesis systems, which is crucial for the standardization and modularization of genetic elements in synthetic biology. Here, more than 400 expression cassettes comprising the GFP gene under the regulation of various 5'-UTRs were systematically characterized to evaluate the protein translation consistency in the two popular Escherichia coli strains of JM109 and BL21, as well as an in vitro protein expression system based on cell lysate. In contrast to the very strong correlation between the two cellular systems, the consistency between in vivo and in vitro protein translation was lost, whereby both in vivo and in vitro translation evidently deviated from the estimation of the standard statistical thermodynamic model. Finally, we found that the absence of nucleotide C and complex secondary structure in the 5'-UTR significantly improve the efficiency of protein translation, both in vitro and in vivo.
Collapse
Affiliation(s)
- Jiaojiao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Peixian Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Qian Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Jinjin Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| |
Collapse
|
8
|
Boyd MA, Thavarajah W, Lucks JB, Kamat NP. Robust and tunable performance of a cell-free biosensor encapsulated in lipid vesicles. SCIENCE ADVANCES 2023; 9:eadd6605. [PMID: 36598992 PMCID: PMC9812392 DOI: 10.1126/sciadv.add6605] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/23/2022] [Indexed: 05/21/2023]
Abstract
Cell-free systems have enabled the development of genetically encoded biosensors to detect a range of environmental and biological targets. Encapsulation of these systems in synthetic membranes to form artificial cells can reintroduce features of the cellular membrane, including molecular containment and selective permeability, to modulate cell-free sensing capabilities. Here, we demonstrate robust and tunable performance of a transcriptionally regulated, cell-free riboswitch encapsulated in lipid membranes, allowing the detection of fluoride, an environmentally important molecule. Sensor response can be tuned by varying membrane composition, and encapsulation protects from sensor degradation, facilitating detection in real-world samples. These sensors can detect fluoride using two types of genetically encoded outputs, enabling detection of fluoride at the Environmental Protection Agency maximum contaminant level of 0.2 millimolars. This work demonstrates the capacity of bilayer membranes to confer tunable permeability to encapsulated, genetically encoded sensors and establishes the feasibility of artificial cell platforms to detect environmentally relevant small molecules.
Collapse
Affiliation(s)
- Margrethe A. Boyd
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Walter Thavarajah
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
| | - Julius B. Lucks
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Corresponding author. (N.P.K.); (J.B.L.)
| | - Neha P. Kamat
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Corresponding author. (N.P.K.); (J.B.L.)
| |
Collapse
|
9
|
Du M, Hou Z, Liu L, Xuan Y, Chen X, Fan L, Li Z, Xu B. 1Progress, applications, challenges and prospects of protein purification technology. Front Bioeng Biotechnol 2022; 10:1028691. [PMID: 36561042 PMCID: PMC9763899 DOI: 10.3389/fbioe.2022.1028691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Protein is one of the most important biological macromolecules in life, which plays a vital role in cell growth, development, movement, heredity, reproduction and other life activities. High quality isolation and purification is an essential step in the study of the structure and function of target proteins. Therefore, the development of protein purification technologies has great theoretical and practical significance in exploring the laws of life activities and guiding production practice. Up to now, there is no forthcoming method to extract any proteins from a complex system, and the field of protein purification still faces significant opportunities and challenges. Conventional protein purification generally includes three steps: pretreatment, rough fractionation, and fine fractionation. Each of the steps will significantly affect the purity, yield and the activity of target proteins. The present review focuses on the principle and process of protein purification, recent advances, and the applications of these technologies in the life and health industry as well as their far-reaching impact, so as to promote the research of protein structure and function, drug development and precision medicine, and bring new insights to researchers in related fields.
Collapse
Affiliation(s)
- Miao Du
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Zhuru Hou
- Science and Technology Centre, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| | - Yan Xuan
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Xiaocong Chen
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Lei Fan
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Zhuoxi Li
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| |
Collapse
|
10
|
Hou J, Chen X, Jiang N, Wang Y, Cui Y, Ma L, Lin Y, Lu Y. Toward efficient multiple-site incorporation of unnatural amino acids using cell-free translation system. Synth Syst Biotechnol 2022; 7:522-532. [PMID: 35024479 PMCID: PMC8718814 DOI: 10.1016/j.synbio.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022] Open
Abstract
Amber suppression has been widely used to incorporate unnatural amino acids (UNAAs) with unique structures or functional side-chain groups into specific sites of the target protein, which expands the scope of protein-coding chemistry. However, this traditional strategy does not allow multiple-site incorporation of different UNAAs into a single protein, which limits the development of unnatural proteins. To address this challenge, the suppression method using multiple termination codons (TAG, TAA or TGA) was proposed, and cell-free unnatural protein synthesis (CFUPS) system was employed. By the analysis of incorporating 3 different UNAAs (p-propargyloxy-l-phenylalanine, p-azyl-phenylalanine and L-4-Iodophenylalanine) and mass spectrometry, the simultaneous usage of the codons TAG and TAA were suggested for better multiple-site UNAA incorporation. The CFUPS conditions were further optimized for better UNAA incorporation efficiency, including the orthogonal translation system (OTS) components, magnesium ions, and the redox environment. This study established a CFUPS approach based on multiple termination codon suppression to achieve efficient and precise incorporation of different types of UNAAs, thereby synthesizing unnatural proteins with novel physicochemical functions.
Collapse
Affiliation(s)
- Jiaqi Hou
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xinjie Chen
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Nan Jiang
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanan Wang
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yi Cui
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lianju Ma
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Danchin A. In vivo, in vitro and in silico: an open space for the development of microbe-based applications of synthetic biology. Microb Biotechnol 2022; 15:42-64. [PMID: 34570957 PMCID: PMC8719824 DOI: 10.1111/1751-7915.13937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Living systems are studied using three complementary approaches: living cells, cell-free systems and computer-mediated modelling. Progresses in understanding, allowing researchers to create novel chassis and industrial processes rest on a cycle that combines in vivo, in vitro and in silico studies. This design-build-test-learn iteration loop cycle between experiments and analyses combines together physiology, genetics, biochemistry and bioinformatics in a way that keeps going forward. Because computer-aided approaches are not directly constrained by the material nature of the entities of interest, we illustrate here how this virtuous cycle allows researchers to explore chemistry which is foreign to that present in extant life, from whole chassis to novel metabolic cycles. Particular emphasis is placed on the importance of evolution.
Collapse
Affiliation(s)
- Antoine Danchin
- Kodikos LabsInstitut Cochin24 rue du Faubourg Saint‐JacquesParis75014France
| |
Collapse
|
12
|
Controlled metabolic cascades for protein synthesis in an artificial cell. Biochem Soc Trans 2021; 49:2143-2151. [PMID: 34623386 DOI: 10.1042/bst20210175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
In recent years, researchers have been pursuing a method to design and to construct life forms from scratch - in other words, to create artificial cells. In many studies, artificial cellular membranes have been successfully fabricated, allowing the research field to grow by leaps and bounds. Moreover, in addition to lipid bilayer membranes, proteins are essential factors required to construct any cellular metabolic reaction; for that reason, different cell-free expression systems under various conditions to achieve the goal of controlling the synthetic cascades of proteins in a confined area have been reported. Thus, in this review, we will discuss recent issues and strategies, enabling to control protein synthesis cascades that are being used, particularly in research on artificial cells.
Collapse
|
13
|
Chen X, Liu Y, Hou J, Lu Y. A linear DNA template-based framework for site-specific unnatural amino acid incorporation. Synth Syst Biotechnol 2021; 6:192-199. [PMID: 34401545 PMCID: PMC8347695 DOI: 10.1016/j.synbio.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022] Open
Abstract
Site-specific incorporation of unnatural amino acids (UNAAs) into proteins using an orthogonal translation system (OTS) has expanded the scope of protein-coding chemistry. The key factor affecting UNAA embedding efficiency is the orthogonality of the OTS. Compared to traditional cell systems, cell-free systems are more convenient to control the reaction process and improve the utilization rate of UNAA. In this study, a linear DNA template-based cell-free unnatural protein synthesis system for rapid high-throughput screening and evolution was proposed. A total of 14 cell extracts were selected for screening out cell extract with high expression level. The result showed that EcAR7 ΔA ΔSer cell extract was optimal for the cell-free system. In addition, the screening results of four UNAAs, p-propargyloxy-l-phenylalanine (pPaF), p-azyl-phenylalanine (pAzF), p-acetyl-l-phenylalanine (pAcF), and p-benzoyl-l-phenylalanine (pBpF), showed that o-aaRS and o-tRNA of pPaF had good orthogonality. A new pair of corresponding o-aaRS and o-tRNA for pBpF was screened out. These results proved that this method could speed up the screening of optimal OTS components for UNAAs with versatile functions.
Collapse
Affiliation(s)
- Xinjie Chen
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingying Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiaqi Hou
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Liu D, Li S, Zhang T, Jiang H, Lu Y. 3D Magnetic Field-Controlled Synthesis, Collective Motion, and Bioreaction Enhancement of Multifunctional Peasecod-like Nanochains. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36157-36170. [PMID: 34296851 DOI: 10.1021/acsami.1c08130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic field-induced synthesis and biocatalysis of magnetic materials have inspired great interest due to the flexible controllability of morphologies and unique magnetoelectrical properties. However, the interaction of the magnetic field and the reaction kinetics during the synthesis of magnetic nanochains has not been revealed. The collective motions in fluids and the multifunctional enhancements for bioreaction of 3D magnetic-controlled nanochains have not been systematically researched. Here, an integrated 3D magnetic control method was reported for the synthesis, collective motion, and multifunctional bioreaction enhancement of peasecod-like nanochains. The interactions of magnetic field and reaction kinetics were rationally controlled to synthesize magnetic nanochains of different morphologies. Collective motions of nanochains under alternating magnetic fields were studied to provide insights into the disturbance on confined fluids. Three mechanisms of reaction enhancement of nanostir, magnetic agent, and nanocatalyst were achieved simultaneously via 3D magnetic-controlled nanochains using a glucose oxidase-horseradish peroxidase multi-enzyme system. The peasecod-like nanochain also exhibited excellent reaction enhancement in cell-free protein synthesis reaction, which is desired for effective high-throughput screening. The integrated 3D magnetic control method through the whole process from fabrication to applications of magnetic nanomaterials could be extended to multifunctional biocatalysis and multi-task biomedicine.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shangsong Li
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ting Zhang
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Hao Jiang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Zhang L, Lin X, Wang T, Guo W, Lu Y. Development and comparison of cell-free protein synthesis systems derived from typical bacterial chassis. BIORESOUR BIOPROCESS 2021; 8:58. [PMID: 34249606 PMCID: PMC8258279 DOI: 10.1186/s40643-021-00413-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems have become an ideal choice for pathway prototyping, protein production, and biosensing, due to their high controllability, tolerance, stability, and ability to produce proteins in a short time. At present, the widely used CFPS systems are mainly based on Escherichia coli strain. Bacillus subtilis, Corynebacterium glutamate, and Vibrio natriegens are potential chassis cells for many biotechnological applications with their respective characteristics. Therefore, to expand the platform of the CFPS systems and options for protein production, four prokaryotes, E. coli, B. subtilis, C. glutamate, and V. natriegens were selected as host organisms to construct the CFPS systems and be compared. Moreover, the process parameters of the CFPS system were optimized, including the codon usage, plasmid synthesis competent cell selection, plasmid concentration, ribosomal binding site (RBS), and CFPS system reagent components. By optimizing and comparing the main influencing factors of different CFPS systems, the systems can be optimized directly for the most influential factors to further improve the protein yield of the systems. In addition, to demonstrate the applicability of the CFPS systems, it was proved that the four CFPS systems all had the potential to produce therapeutic proteins, and they could produce the receptor-binding domain (RBD) protein of SARS-CoV-2 with functional activity. They not only could expand the potential options for in vitro protein production, but also could increase the application range of the system by expanding the cell-free protein synthesis platform. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40643-021-00413-2.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Ecology, Shenyang Agricultural University, Shenyang, 110866 Liaoning Province China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| | - Xiaomei Lin
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| | - Wei Guo
- Department of Ecology, Shenyang Agricultural University, Shenyang, 110866 Liaoning Province China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| |
Collapse
|