1
|
Liu S, Xiao F, Li Y, Zhang Y, Wang Y, Shi G. Establishment of the CRISPR-Cpf1 gene editing system in Bacillus licheniformis and multiplexed gene knockout. Synth Syst Biotechnol 2024; 10:39-48. [PMID: 39224148 PMCID: PMC11366866 DOI: 10.1016/j.synbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/13/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Bacillus licheniformis is a significant industrial microorganism. Traditional gene editing techniques relying on homologous recombination often exhibit low efficiency due to their reliance on resistance genes. Additionally, the established CRISPR gene editing technology, utilizing Cas9 endonuclease, faces challenges in achieving simultaneous knockout of multiple genes. To address this limitation, the CRISPR-Cpf1 system has been developed, enabling multiplexed gene editing across various microorganisms. Key to the efficient gene editing capability of this system is the rigorous screening of highly effective expression elements to achieve conditional expression of protein Cpf1. In this study, we employed mCherry as a reporter gene and harnessed P mal for regulating the expression of Cpf1 to establish the CRISPR-Cpf1 gene editing system in Bacillus licheniformis. Our system achieved a 100 % knockout efficiency for the single gene vpr and up to 80 % for simultaneous knockout of the double genes epr and mpr. Furthermore, the culture of a series of protease-deficient strains revealed that the protease encoded by aprE contributed significantly to extracellular enzyme activity (approximately 80 %), whereas proteases encoded by vpr, epr, and mpr genes contributed to a smaller proportion of extracellular enzyme activity. These findings provide support for effective molecular modification and metabolic regulation in industrial organisms.
Collapse
Affiliation(s)
- Suxin Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Yanling Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| |
Collapse
|
2
|
Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology. 3 Biotech 2023; 13:383. [PMID: 37920190 PMCID: PMC10618153 DOI: 10.1007/s13205-023-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
The CRISPR-Cas system's applications in biotechnology offer a promising avenue for addressing pressing global challenges, such as climate change, environmental pollution, the energy crisis, and the food crisis, thereby advancing sustainability. The ever-growing demand for food due to the projected population of around 9.6 billion by 2050 requires innovation in agriculture. CRISPR-Cas technology emerges as a powerful solution, enhancing crop varieties, optimizing yields, and improving resilience to stressors. It offers multiple gene editing, base editing, and prime editing, surpassing conventional methods. CRISPR-Cas introduces disease and herbicide resistance, high-yielding, drought-tolerant, and water-efficient crops to address rising water utilization and to improve the efficiency of agricultural practices which promise food sustainability and revolutionize agriculture for the benefit of future generations. The application of CRISPR-Cas technology extends beyond agriculture to address environmental challenges. With the adverse impacts of climate change and pollution endangering ecosystems, there is a growing need for sustainable solutions. The technology's potential in carbon capture and reduction through bio-sequestration is a pivotal strategy for combating climate change. Genomic advancements allow for the development of genetically modified organisms, optimizing biofuel and biomaterial production, and contributing to a renewable and sustainable energy future. This study reviews the multifaceted applications of CRISPR-Cas technology in the agricultural and environmental fields and emphasizes its potential to secure a sustainable future.
Collapse
Affiliation(s)
- Mohammad Ali Matinvafa
- Department of Biotechnology & Environment, Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Negin Parsasharif
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Hamedan, Iran
| |
Collapse
|
3
|
Xin Q, Wang B, Pan L. Development and application of a CRISPR-dCpf1 assisted multiplex gene regulation system in Bacillus amyloliquefaciens LB1ba02. Microbiol Res 2022; 263:127131. [PMID: 35868259 DOI: 10.1016/j.micres.2022.127131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Bacillus amyloliquefaciens LB1ba02 is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. However, the restriction-modification system, existed in B. amyloliquefaciens LB1ba02, results in a low transformation efficiency, which makes its CRISPR tool development lagging far behind other Bacillus species. Here, we adapted a nuclease-deficient mutant dCpf1 (D917A) of Cpf1 and developed a CRISPR/dCpf1 assisted multiplex gene regulation system for the first time in B. amyloliquefaciens LB1ba02. A 73.9-fold inhibition efficiency and an optimal 1.8-fold activation effect at the - 327 bp site upstream of the TSS were observed in this system. In addition, this system achieved the simultaneous activation of the expression of three genes (secE, secDF, and prsA) by designing a crRNA array. On this basis, we constructed a crRNA activation library for the proteins involved in the Sec pathway, and screened 7 proteins that could promote the secretion of extracellular proteins. Among them, the most significant effect was observed when the expression of molecular motor transporter SecA was activated. Not only that, we constructed crRNA arrays to activate the expression of two or three proteins in combination. The results showed that the secretion efficiency of fluorescent protein GFP was further increased and an optimal 9.8-fold effect was observed when SecA and CsaA were simultaneously activated in shake flask fermentation. Therefore, the CRISPR/dCpf1-ω transcription regulation system can be applied well in a restriction-modification system strain and this system provides another CRISPR-based regulation tool for researchers who are committed to the development of genetic engineering and metabolic circuits in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Qinglong Xin
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China.
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
4
|
Xin Q, Chen Y, Chen Q, Wang B, Pan L. Development and application of a fast and efficient CRISPR-based genetic toolkit in Bacillus amyloliquefaciens LB1ba02. Microb Cell Fact 2022; 21:99. [PMID: 35643496 PMCID: PMC9148480 DOI: 10.1186/s12934-022-01832-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/17/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Bacillus amyloliquefaciens is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. B.amyloliquefaciens LB1ba02 is a production strain suitable for secreting mesophilic α-amylase in the industry. Nevertheless, due to the low transformation efficiency and restriction-modification system, the development of its CRISPR tool lags far behind other species and strains from the genus Bacillus. This work was undertaken to develop a fast and efficient gene-editing tool in B.amyloliquefaciens LB1ba02. RESULTS In this study, we fused the nuclease-deficient mutant Cas9n (D10A) of Cas9 with activation-induced cytidine deaminase (AID) and developed a fast and efficient base editing system for the first time in B. amyloliquefaciens LB1ba02. The system was verified by inactivating the pyrF gene coding orotidine 5'-phosphate decarboxylase and the mutant could grow normally on M9 medium supplemented with 5-fluoroorotic acid (5-FOA) and uridine (U). Our base editing system has a 6nt editing window consisting of an all-in-one temperature-sensitive plasmid that facilitates multiple rounds of genome engineering in B. amyloliquefaciens LB1ba02. The total editing efficiency of this method reached 100% and it achieved simultaneous editing of three loci with an efficiency of 53.3%. In addition, based on the base editing CRISPR/Cas9n-AID system, we also developed a single plasmid CRISPR/Cas9n system suitable for rapid gene knockout and integration. The knockout efficiency for a single gene reached 93%. Finally, we generated 4 genes (aprE, nprE, wprA, and bamHIR) mutant strain, LB1ba02△4. The mutant strain secreted 1.25-fold more α-amylase into the medium than the wild-type strain. CONCLUSIONS The CRISPR/Cas9n-AID and CRISPR/Cas9n systems developed in this work proved to be a fast and efficient genetic manipulation tool in a restriction-modification system and poorly transformable strain.
Collapse
Affiliation(s)
- Qinglong Xin
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yudan Chen
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Qianlin Chen
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Conversion of Food Waste into 2,3-Butanediol via Thermophilic Fermentation: Effects of Carbohydrate Content and Nutrient Supplementation. Foods 2022; 11:foods11020169. [PMID: 35053901 PMCID: PMC8774479 DOI: 10.3390/foods11020169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Fermentation of food waste into 2,3-butanediol (2,3-BDO), a high-value chemical, is environmentally sustainable and an inexpensive method to recycle waste. Compared to traditional mesophilic fermentation, thermophilic fermentation can inhibit the growth of contaminant bacteria, thereby improving the success of food waste fermentation. However, the effects of sugar and nutrient concentrations in thermophilic food waste fermentations are currently unclear. Here, we investigated the effects of sugar and nutrients (yeast extract (YE) and peptone) concentrations on 2,3-BDO production from fermenting glucose and food waste media using the newly isolated thermophilic Bacillus licheniformis YNP5-TSU. When glucose media was used, fermentation was greatly affected by sugar and nutrient concentrations: excessive glucose (>70 g/L) slowed down the fermentation and low nutrients (2 g/L YE and 1 g/L peptone) caused fermentation failure. However, when food waste media were used with low nutrient addition, the bacteria consumed all 57.8 g/L sugars within 24 h and produced 24.2 g/L 2,3-BDO, equivalent to a fermentation yield of 0.42 g/g. An increase in initial sugar content (72.9 g/L) led to a higher 2,3-BDO titer of 36.7 g/L with a nearly theoretical yield of 0.47 g/g. These findings may provide fundamental knowledge for designing cost-effective food waste fermentation to produce 2,3-BDO.
Collapse
|