1
|
Diversity of Parasitic Animals in Hypersaline Waters: A Review. DIVERSITY 2023. [DOI: 10.3390/d15030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Hypersaline waters are unique polyextreme habitats, where the salinity limits species richness. There are main patterns of a relationship between salinity and the species richness of free-living aquatic animals, but for parasitic organisms, general regularities have not yet been established. There are quite numerous data on parasites in hypersaline waters worldwide; however, they have not been summarized before. This review tries to fill this gap by summarizing the available data. All parasites, 85 species and forms, found in hypersaline waters belong to five phyla: Platyhelminthes, Nematoda, Acanthocephala, Cnidaria, and Arthropoda. Platyhelminthes are the most diverse phylum with the highest species richness in class Cestoda. Most species were noted in hypersaline waters with a salinity of no more than 100 g·L−1. The total number of parasitic species decreases exponentially with an increase in salinity. The number of free-living animal species inhabiting waters with a salinity from 35 to 210 g·L−1 is approximately 12 times higher than that of parasitic ones in all intervals of this salinity range. Salinity influences parasite richness and composition in two ways—directly and through the availability of hosts. Free-living crustaceans were hosts of most parasite species in hypersaline waters. Artemia spp., the most halotolerant animals, are an intermediate host for 22 species and unidentified forms of parasites.
Collapse
|
2
|
Fayard M, Dechaume-Moncharmont FX, Wattier R, Perrot-Minnot MJ. Magnitude and direction of parasite-induced phenotypic alterations: a meta-analysis in acanthocephalans. Biol Rev Camb Philos Soc 2020; 95:1233-1251. [PMID: 32342653 DOI: 10.1111/brv.12606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
Several parasite species have the ability to modify their host's phenotype to their own advantage thereby increasing the probability of transmission from one host to another. This phenomenon of host manipulation is interpreted as the expression of a parasite extended phenotype. Manipulative parasites generally affect multiple phenotypic traits in their hosts, although both the extent and adaptive significance of such multidimensionality in host manipulation is still poorly documented. To review the multidimensionality and magnitude of host manipulation, and to understand the causes of variation in trait value alteration, we performed a phylogenetically corrected meta-analysis, focusing on a model taxon: acanthocephalan parasites. Acanthocephala is a phylum of helminth parasites that use vertebrates as final hosts and invertebrates as intermediate hosts, and is one of the few parasite groups for which manipulation is predicted to be ancestral. We compiled 279 estimates of parasite-induced alterations in phenotypic trait value, from 81 studies and 13 acanthocephalan species, allocating a sign to effect size estimates according to the direction of alteration favouring parasite transmission, and grouped traits by category. Phylogenetic inertia accounted for a low proportion of variation in effect sizes. The overall average alteration of trait value was moderate and positive when considering the expected effect of alterations on trophic transmission success (signed effect sizes, after the onset of parasite infectivity to the final host). Variation in the alteration of trait value was affected by the category of phenotypic trait, with the largest alterations being reversed taxis/phobia and responses to stimuli, and increased vulnerability to predation, changes to reproductive traits (behavioural or physiological castration) and immunosuppression. Parasite transmission would thereby be facilitated mainly by changing mainly the choice of micro-habitat and the anti-predation behaviour of infected hosts, and by promoting energy-saving strategies in the host. In addition, infection with larval stages not yet infective to definitive hosts (acanthella) tends to induce opposite effects of comparable magnitude to infection with the infective stage (cystacanth), although this result should be considered with caution due to the low number of estimates with acanthella. This analysis raises important issues that should be considered in future studies investigating the adaptive significance of host manipulation, not only in acanthocephalans but also in other taxa. Specifically, the contribution of phenotypic traits to parasite transmission and the range of taxonomic diversity covered deserve thorough attention. In addition, the relationship between behaviour and immunity across parasite developmental stages and host-parasite systems (the neuropsychoimmune hypothesis of host manipulation), still awaits experimental evidence. Most of these issues apply more broadly to reported cases of host manipulation by other groups of parasites.
Collapse
Affiliation(s)
- Marion Fayard
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | - François-Xavier Dechaume-Moncharmont
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Rémi Wattier
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | | |
Collapse
|
3
|
On Two Morphologically Different Cysticercoids of the Genus Eurycestus (Cestoda: Dilepididae) in Artemia Franciscana (Arthropoda: Artemiidae) in a Hypersaline Pond in Dubai, United Arab Emirates. Helminthologia 2019; 56:151-156. [PMID: 31662686 PMCID: PMC6799561 DOI: 10.2478/helm-2019-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/28/2018] [Indexed: 11/20/2022] Open
Abstract
During a survey on tapeworm larval stages in Artemia franciscana from an artificial pond in Dubai, United Arab Emirates, a high prevalence of Eurycestus avoceti-like cysticercoids was established. Adult male and female crustaceans showed a prevalence of 61.9 and 62.7 %, respectively. The intensity ranged from one to four and one to three cyst, respectively. Out of 215 examined cysticercoids, 207 specimens had morphological features matching with E. avoceti. The flaky structure of the surrounding capsule, the elongated shape of the cysticercoid and the larger number of hooklets on the suckers suggest that the eight further larval cestodes belonged to another species of the genus Eurycestus.
Collapse
|
4
|
Herbison REH. Lessons in Mind Control: Trends in Research on the Molecular Mechanisms behind Parasite-Host Behavioral Manipulation. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
5
|
Functional Role of Native and Invasive Filter-Feeders, and the Effect of Parasites: Learning from Hypersaline Ecosystems. PLoS One 2016; 11:e0161478. [PMID: 27560978 PMCID: PMC4999065 DOI: 10.1371/journal.pone.0161478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/06/2016] [Indexed: 11/19/2022] Open
Abstract
Filter-feeding organisms are often keystone species with a major influence on the dynamics of aquatic ecosystems. Studies of filtering rates in such taxa are therefore vital in order to understand ecosystem functioning and the impact of natural and anthropogenic stressors such as parasites, climate warming and invasive species. Brine shrimps Artemia spp. are the dominant grazers in hypersaline systems and are a good example of such keystone taxa. Hypersaline ecosystems are relatively simplified environments compared with much more complex freshwater and marine ecosystems, making them suitable model systems to address these questions. The aim of this study was to compare feeding rates at different salinities and temperatures between clonal A. parthenogenetica (native to Eurasia and Africa) and the invasive American brine shrimp A. franciscana, which is excluding native Artemia from many localities. We considered how differences observed in laboratory experiments upscale at the ecosystem level across both spatial and temporal scales (as indicated by chlorophyll-a concentration and turbidity). In laboratory experiments, feeding rates increased at higher temperatures and salinities in both Artemia species and sexes, whilst A. franciscana consistently fed at higher rates. A field study of temporal dynamics revealed significantly higher concentrations of chlorophyll-a in sites occupied by A. parthenogenetica, supporting our experimental findings. Artemia parthenogenetica density and biomass were negatively correlated with chlorophyll-a concentration at the spatial scale. We also tested the effect of cestode parasites, which are highly prevalent in native Artemia but much rarer in the invasive species. The cestodes Flamingolepis liguloides and Anomotaenia tringae decreased feeding rates in native Artemia, whilst Confluaria podicipina had no significant effect. Total parasite prevalence was positively correlated with turbidity. Overall, parasites are likely to reduce feeding rates in the field, and their negative impact on host fecundity is likely to exacerbate the difference between grazing rates of native and alien Artemia populations at the ecosystem level. The results of this study provide evidence for the first time that the replacement of native Artemia by A. franciscana may have major consequences for the functioning of hypersaline ecosystems. The strong effect of parasites on feeding rate underlines the importance of taking parasites into account in order to improve our understanding of the functioning of aquatic ecosystems.
Collapse
|
6
|
Sánchez MI, Pons I, Martínez-Haro M, Taggart MA, Lenormand T, Green AJ. When Parasites Are Good for Health: Cestode Parasitism Increases Resistance to Arsenic in Brine Shrimps. PLoS Pathog 2016; 12:e1005459. [PMID: 26938743 PMCID: PMC4777290 DOI: 10.1371/journal.ppat.1005459] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
Parasites and pollutants can both affect any living organism, and their interactions can be very important. To date, repeated studies have found that parasites and heavy metals or metalloids both have important negative effects on the health of animals, often in a synergistic manner. Here, we show for the first time that parasites can increase host resistance to metalloid arsenic, focusing on a clonal population of brine shrimp from the contaminated Odiel and Tinto estuary in SW Spain. We studied the effect of cestodes on the response of Artemia to arsenic (acute toxicity tests, 24h LC50) and found that infection consistently reduced mortality across a range of arsenic concentrations. An increase from 25°C to 29°C, simulating the change in mean temperature expected under climate change, increased arsenic toxicity, but the benefits of infection persisted. Infected individuals showed higher levels of catalase and glutathione reductase activity, antioxidant enzymes with a very important role in the protection against oxidative stress. Levels of TBARS were unaffected by parasites, suggesting that infection is not associated with oxidative damage. Moreover, infected Artemia had a higher number of carotenoid-rich lipid droplets which may also protect the host through the "survival of the fattest" principle and the antioxidant potential of carotenoids. This study illustrates the need to consider the multi-stress context (contaminants and temperature increase) in which host-parasite interactions occur.
Collapse
Affiliation(s)
- Marta I. Sánchez
- Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), Seville, Spain
| | - Inès Pons
- Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), Seville, Spain
| | - Mónica Martínez-Haro
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, Coimbra, Portugal
- Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Mark A. Taggart
- Environmental Contamination and Ecological Health, Environmental Research Institute, University of the Highlands and Islands, Thurso, Scotland, United Kingdom
| | - Thomas Lenormand
- Department of Genetic and Evolutive Ecology, Center of Functional Ecology and Evolution (CEFE), National Centre for Scientific Research (CNRS), Montpellier, France
| | - Andy J. Green
- Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), Seville, Spain
| |
Collapse
|
7
|
Perrot‐Minnot M, Maddaleno M, Cézilly F. Parasite‐induced inversion of geotaxis in a freshwater amphipod: a role for anaerobic metabolism? Funct Ecol 2015. [DOI: 10.1111/1365-2435.12516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Matthieu Maddaleno
- Université Bourgogne Franche‐Comté UB, CNRS, Biogéosciences UMR6282 F‐21000 Dijon France
| | - Frank Cézilly
- Université Bourgogne Franche‐Comté UB, CNRS, Biogéosciences UMR6282 F‐21000 Dijon France
| |
Collapse
|
8
|
Redón S, Amat F, Sánchez MI, Green AJ. Comparing cestode infections and their consequences for host fitness in two sexual branchiopods: alien Artemia franciscana and native A. salina from syntopic-populations. PeerJ 2015; 3:e1073. [PMID: 26157636 PMCID: PMC4493677 DOI: 10.7717/peerj.1073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/12/2015] [Indexed: 11/28/2022] Open
Abstract
The American brine shrimp Artemia franciscana is invasive in the Mediterranean region where it has displaced native species (the sexual A. salina, and the clonal A. parthenogenetica) from many salt pond complexes. Artemia populations are parasitized by numerous avian cestodes whose effects have been studied in native species. We present a study from the Ebro Delta salterns (NE Spain), in a salt pond where both A. franciscana and native A. salina populations coexist, providing a unique opportunity to compare the parasite loads of the two sexual species in syntopy. The native species had consistently higher infection parameters, largely because the dominant cestode in A. salina adults and juveniles (Flamingolepis liguloides) was much rarer in A. franciscana. The most abundant cestodes in the alien species were Eurycestus avoceti (in adults) and Flamingolepis flamingo (in juveniles). The abundance of E. avoceti and F. liguloides was higher in the A. franciscana population syntopic with A. salina than in a population sampled at the same time in another pond where the native brine shrimp was absent, possibly because the native shrimp provides a better reservoir for parasite circulation. Infection by cestodes caused red colouration in adult and juvenile A. salina, and also led to castration in a high proportion of adult females. Both these effects were significantly stronger in the native host than in A. franciscana with the same parasite loads. However, for the first time, significant castration effects (for E. avoceti and F. liguloides) and colour change (for six cestode species) were observed in infected A. franciscana. Avian cestodes are likely to help A. franciscana outcompete native species. At the same time, they are likely to reduce the production of A. franciscana cysts in areas where they are harvested commercially.
Collapse
Affiliation(s)
- Stella Redón
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n , Castellón , Spain
| | - Francisco Amat
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n , Castellón , Spain
| | - Marta I Sánchez
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC) , Américo Vespucio s/n, Sevilla , Spain
| | - Andy J Green
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC) , Américo Vespucio s/n, Sevilla , Spain
| |
Collapse
|
9
|
Redon S, Berthelemy NJ, Mutafchiev Y, Amat F, Georgiev BB, Vasileva GP. Helminth parasites of Artemia franciscana (Crustacea: Branchiopoda) in the Great Salt Lake, Utah: first data from the native range of this invader of European wetlands. Folia Parasitol (Praha) 2015; 62. [PMID: 26040582 DOI: 10.14411/fp.2015.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/19/2015] [Indexed: 11/19/2022]
Abstract
The present study is the first survey on the role of Artemia franciscana Kellogg as intermediate host of helminth parasites in its native geographical range in North America (previous studies have recorded nine cestode and one nematode species from this host in its invasive habitats in the Western Mediterranean). Samples of Artemia franciscana were collected from four sites in the Great Salt Lake (GSL), Utah, across several months (June-September 2009). A. franciscana serves as intermediate host of five helminth species in this lake. Four of them are cestodes: three hymenolepidids, i.e. Confluaria podicipina (Szymanski, 1905) (adults parasitic in grebes), Hymenolepis (sensu lato) californicus Young, 1950 (adults parasitic in gulls), Wardium sp. (definitive host unknown, probably charadriiform birds), and one dilepidid, Fuhrmannolepis averini Spassky et Yurpalova, 1967 (adults parasitic in phalaropes). In addition, an unidentified nematode of the family Acuariidae was recorded. Confluaria podicipina is the most prevalent and abundant parasite at all sampling sites, followed by H. (s. l.) californicus. The species composition of the parasites and the spatial variations in their prevalence and abundance reflect the abundance and distribution of aquatic birds serving as their definitive hosts. The temporal dynamics of the overall helminth infections exhibits the highest prevalence in the last month of study at each site (August or September). This native population of A. franciscana from GSL is characterised with higher prevalence, intensity and abundance of the overall cestode infection compared to the introduced populations of this species in the Palaearctic Region. The values of the infection descriptors in the native population of A. franciscana are slightly lower or in some cases similar to those of the Palaearctic species Artemia parthenogenetica Barigozzi (diploid populations) and Artemia salina (Linnaeus) in their native habitats.
Collapse
Affiliation(s)
- Stella Redon
- Institute of Aquaculture Torre de la Sal, CSIC, Castellon, Spain
| | - Nicole J Berthelemy
- Department of Zoology, College of Science, Weber State University, Ogden, USA
| | - Yasen Mutafchiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria This article contains supporting information (Fig. S1, Tables S1-S3) online at http://folia.paru.cas.cz/suppl/2015-62-030.pdf
| | - Francisco Amat
- Institute of Aquaculture Torre de la Sal, CSIC, Castellon, Spain
| | - Boyko B Georgiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria This article contains supporting information (Fig. S1, Tables S1-S3) online at http://folia.paru.cas.cz/suppl/2015-62-030.pdf
| | - Gergana P Vasileva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria This article contains supporting information (Fig. S1, Tables S1-S3) online at http://folia.paru.cas.cz/suppl/2015-62-030.pdf
| |
Collapse
|
10
|
Sánchez MI, Nikolov PN, Georgieva DD, Georgiev BB, Vasileva GP, Pankov P, Paracuellos M, Lafferty KD, Green AJ. High prevalence of cestodes in Artemia spp. throughout the annual cycle: relationship with abundance of avian final hosts. Parasitol Res 2013; 112:1913-23. [PMID: 23463137 DOI: 10.1007/s00436-013-3347-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/07/2013] [Indexed: 11/25/2022]
Abstract
Brine shrimp, Artemia spp., act as intermediate hosts for a range of cestode species that use waterbirds as their final hosts. These parasites can have marked influences on shrimp behavior and fecundity, generating the potential for cascading effects in hypersaline food webs. We present the first comprehensive study of the temporal dynamics of cestode parasites in natural populations of brine shrimp throughout the annual cycle. Over a 12-month period, clonal Artemia parthenogenetica were sampled in the Odiel marshes in Huelva, and the sexual Artemia salina was sampled in the Salinas de Cerrillos in Almería. Throughout the year, 4-45 % of A. parthenogenetica were infected with cestodes (mean species richness = 0.26), compared to 27-72 % of A. salina (mean species richness = 0.64). Ten cestode species were recorded. Male and female A. salina showed similar levels of parasitism. The most prevalent and abundant cestodes were those infecting the most abundant final hosts, especially the Greater Flamingo Phoenicopterus ruber. In particular, the flamingo parasite Flamingolepis liguloides had a prevalence of up to 43 % in A. parthenogenetica and 63.5 % in A. salina in a given month. Although there was strong seasonal variation in prevalence, abundance, and intensity of cestode infections, seasonal changes in bird counts were weak predictors of the dynamics of cestode infections. However, infection levels of Confluaria podicipina in A. parthenogenetica were positively correlated with the number of their black-necked grebe Podiceps nigricollis hosts. Similarly, infection levels of Anomotaenia tringae and Anomotaenia microphallos in A. salina were correlated with the number of shorebird hosts present the month before. Correlated seasonal transmission structured the cestode community, leading to more multiple infections than expected by chance.
Collapse
Affiliation(s)
- Marta I Sánchez
- Department of Wetland Ecology, Estación Biológica de Doñana, CSIC, C/ Américo Vespucio s/n, E-41092, Seville, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rode NO, Lievens EJ, Flaven E, Segard A, Jabbour-Zahab R, Sanchez MI, Lenormand T. Why join groups? Lessons from parasite-manipulatedArtemia. Ecol Lett 2013; 16:493-501. [DOI: 10.1111/ele.12074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/26/2012] [Accepted: 12/13/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Nicolas O. Rode
- Centre d'Ecologie Fonctionnelle et Evolutive - UMR 5175; 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Eva J.P. Lievens
- Centre d'Ecologie Fonctionnelle et Evolutive - UMR 5175; 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Elodie Flaven
- Centre d'Ecologie Fonctionnelle et Evolutive - UMR 5175; 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Adeline Segard
- Centre d'Ecologie Fonctionnelle et Evolutive - UMR 5175; 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Roula Jabbour-Zahab
- Centre d'Ecologie Fonctionnelle et Evolutive - UMR 5175; 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Marta I. Sanchez
- Estación Biológica de Doñana (CSIC); Avda. Américo Vespucio s/n 41092 Sevilla Spain
| | - Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive - UMR 5175; 1919 route de Mende 34293 Montpellier Cedex 5 France
| |
Collapse
|
12
|
Biron DG, Loxdale HD. Host–parasite molecular cross-talk during the manipulative process of a host by its parasite. J Exp Biol 2013; 216:148-60. [DOI: 10.1242/jeb.073825] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Summary
Many parasite taxa are able to alter a wide range of phenotypic traits of their hosts in ways that seem to improve the parasite’s chance of completing its life cycle. Host behavioural alterations are classically seen as compelling illustrations of the ‘extended phenotype’ concept, which suggests that parasite genes have phenotype effects on the host. The molecular mechanisms and the host–parasite cross-talk involved during the manipulative process of a host by its parasite are still poorly understood. In this Review, the current knowledge on proximate mechanisms related to the ‘parasite manipulation hypothesis’ is presented. Parasite genome sequences do not themselves provide a full explanation of parasite biology nor of the molecular cross-talk involved in host–parasite associations. Recently, first-generation proteomics tools have been employed to unravel some aspects of the parasite manipulation process (i.e. proximate mechanisms and evolutionary convergence) using certain model arthropod-host–parasite associations. The pioneer proteomics results obtained on the manipulative process are here highlighted, along with the many gaps in our knowledge. Candidate genes and biochemical pathways potentially involved in the parasite manipulation are presented. Finally, taking into account the environmental factors, we suggest new avenues and approaches to further explore and understand the proximate mechanisms used by parasite species to alter phenotypic traits of their hosts.
Collapse
Affiliation(s)
- David G. Biron
- Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, F-63177 Aubiere, France
| | - Hugh D. Loxdale
- Royal Entomological Society, Chiswell Green Lane, St Albans AL2 3NS, UK
| |
Collapse
|
13
|
Sánchez MI, Varo N, Matesanz C, Ramo C, Amat JA, Green AJ. Cestodes change the isotopic signature of brine shrimp, Artemia, hosts: Implications for aquatic food webs. Int J Parasitol 2013; 43:73-80. [DOI: 10.1016/j.ijpara.2012.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 11/30/2022]
|
14
|
Perrot-Minnot MJ, Maddaleno M, Balourdet A, Cézilly F. Host manipulation revisited: no evidence for a causal link between altered photophobia and increased trophic transmission of amphipods infected with acanthocephalans. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02027.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Aude Balourdet
- Université de Bourgogne, UMR CNRS 6282 Biogéosciences; Dijon; France
| | | |
Collapse
|
15
|
Sánchez MI, Rode NO, Flaven E, Redón S, Amat F, Vasileva GP, Lenormand T. Differential susceptibility to parasites of invasive and native species of Artemia living in sympatry: consequences for the invasion of A. franciscana in the Mediterranean region. Biol Invasions 2012. [DOI: 10.1007/s10530-012-0192-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Redón S, Amat F, Hontoria F, Vasileva GP, Nikolov PN, Georgiev BB. Participation of metanauplii and juvenile individuals of Artemia parthenogenetica (Branchiopoda) in the circulation of avian cestodes. Parasitol Res 2010; 108:905-12. [PMID: 20981443 DOI: 10.1007/s00436-010-2132-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 10/14/2010] [Indexed: 11/25/2022]
Abstract
Adult crustaceans of the genus Artemia (brine shrimps) are intermediate hosts in the life cycle of cestode species parasitic in aquatic birds as their definitive hosts. However, there are no data on the role of larval and juvenile brine shrimps in the transmission of avian helminth parasites. In order to examine the possible role of early developmental stages (nauplii, metanauplii and juveniles) of Artemia for the circulation of avian cestodes, the natural cestode infection in the population of Artemia parthenogenetica from La Mata Lagoon, Mediterranean coast of Spain, was studied. Metacestodes (cysticercoids) of four cestode species were recorded in adult brine shrimps: Flamingolepis liguloides and Flamingolepis flamingo (hymenolepidids parasitic in flamingos), Confluaria podicipina (a hymenolepidid species parasitic in grebes) and Eurycestus avoceti (a dilepidid species parasitic in avocets, stilts, plovers and, to a lesser extent, in flamingos). No cysticercoids were found in nauplii. Two species, F. liguloides and F. flamingo, were found in metanauplii and juvenile brine shrimps. Only 36.3% of the cysticercoids of F. liguloides occurred in adult brine shrimps; the remaining 63.7% were parasitic in metanauplii (39.6%) and juveniles (24.1%). Similarly, the metacestodes of F. flamingo were also distributed among various age groups: in adults (44.4% of cysticercoids), juveniles (27.8%) and metanauplii (27.8%). These results indicate that the early developmental stages of Artemia have an important role for the circulation of certain parasite species. No cysticercoids of C. podicipina and E. avoceti were recorded in larval and juvenile brine shrimps. The selective infestation of larval brine shrimps with flamingo parasites is probably associated with the feeding behaviour of definitive hosts, which are filtering predators; in contrast, grebes and waders pick brine shrimps individually one by one. The possible underlying mechanism for selective infestation of metanauplii and adults by certain cestode species is associated with the size of parasite eggs, allowing only cestode species with small eggs to be ingested by larval brine shrimps.
Collapse
Affiliation(s)
- Stella Redón
- Institute of Aquaculture Torre de la Sal, CSIC, Ribera de Cabanes s/n, 12595, Castellón, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Cézilly F, Perrot-Minnot MJ. Interpreting multidimensionality in parasite-induced phenotypic alterations: panselectionism versus parsimony. OIKOS 2010. [DOI: 10.1111/j.1600-0706.2010.18579.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Sánchez MI, Thomas F, Perrot-Minnot MJ, Biron DG, Bertrand-Michel J, Missé D. Neurological and Physiological Disorders in Artemia Harboring Manipulative Cestodes. J Parasitol 2009; 95:20-4. [DOI: 10.1645/ge-1550.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 05/26/2008] [Indexed: 11/10/2022] Open
|
19
|
Sánchez MI, Hortas F, Figuerola J, Green AJ. Sandpipers Select Red Brine Shrimps Rich in Both Carotenoids and Parasites. Ethology 2009. [DOI: 10.1111/j.1439-0310.2008.01601.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Georgiev BB, Sánchez MI, Vasileva GP, Nikolov PN, Green AJ. Cestode parasitism in invasive and native brine shrimps (Artemia spp.) as a possible factor promoting the rapid invasion of A. franciscana in the Mediterranean region. Parasitol Res 2007; 101:1647-55. [PMID: 17712569 DOI: 10.1007/s00436-007-0708-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Accepted: 07/30/2007] [Indexed: 11/30/2022]
Abstract
Artemia franciscana is an invasive crustacean expanding its range in hypersaline wetlands in the Mediterranean region and replacing native Artemia parthenogenetica and Artemia salina. Native brine shrimps are known as intermediate hosts of cestodes; infected individuals exhibit changes in their behaviour and appearance, thus facilitating the parasite transmission to the avian hosts by predation. To assess whether invasive brine shrimps participate in the cestode life cycles to the same extent as the native species, we examined the natural infections in seven populations of Artemia spp. along the southern coast of Spain and Portugal: three populations of each A. franciscana and A. parthenogenetica and one population of A. salina. Ten cestode species were found in A. parthenogenetica, while only six were recorded in each of A. salina and A. franciscana. The overall infection was consistently higher in native than in invasive populations. For a particular cestode species, the prevalence or abundance was significantly higher in a native population for 54 pairwise comparisons and only higher for an invasive population for 4 pairwise comparisons. These results suggest that cestodes may influence competitive interactions between native and invasive brine shrimps, thus partly explaining the invasive success of A. franciscana.
Collapse
Affiliation(s)
- B B Georgiev
- Central Laboratory of General Ecology, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria.
| | | | | | | | | |
Collapse
|