1
|
Wang Z, Ma H, Chen C, Sun R, Liu K, Zhang B, Fang G. Consistency in responses to conspecific advertisement calls with various signal-to-noise ratios in both sexes of the Anhui tree frog. Curr Zool 2023; 69:718-726. [PMID: 37876647 PMCID: PMC10591154 DOI: 10.1093/cz/zoac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 10/26/2023] Open
Abstract
Environmental noise has a significant negative impact on acoustic communication in most situations, as it influences the production, transmission, and reception of acoustic signals. However, how animals respond to conspecific sounds when there is interference from environmental noise, and whether males and females display convergent behavioral responses in the face of noise masking remain poorly understood. In this study, we investigated the effects of conspecific male advertisement calls with different signal-to-noise ratios on male-male competition and female choice in the Anhui tree frog Rhacophorus zhoukaiyae using playback and phonotaxis experiments, respectively. The results showed that (1) female Anhui tree frogs preferentially selected the conspecific calls with higher SNR compared to calls with lower SNR; (2) males preferentially responded vocally to the conspecific calls with higher SNR compared to calls with lower SNR; and (3) males' competitive strategies were flexible in the face of noise interference. These results suggest that preferences of both sexes converge in outcome, and that male competitive strategies may depend on predictable female preferences. This study will provide an important basis for further research on decision-making in animals.
Collapse
Affiliation(s)
- Zhiyue Wang
- School of Life Science, Anhui University, Hefei 230601, China
- Thematic Area of Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Haohao Ma
- School of Life Science, Anhui University, Hefei 230601, China
| | - Cheng Chen
- School of Life Science, Anhui University, Hefei 230601, China
| | - Ruolei Sun
- School of Life Science, Anhui University, Hefei 230601, China
- Thematic Area of Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Kai Liu
- School of Life Science, Anhui University, Hefei 230601, China
| | - Baowei Zhang
- School of Life Science, Anhui University, Hefei 230601, China
| | - Guangzhan Fang
- Thematic Area of Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
2
|
Kiai A, Clemens J, Kössl M, Poeppel D, Hechavarría J. Flexible control of vocal timing in Carollia perspicillata bats enables escape from acoustic interference. Commun Biol 2023; 6:1153. [PMID: 37957351 PMCID: PMC10643407 DOI: 10.1038/s42003-023-05507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
In natural environments, background noise can degrade the integrity of acoustic signals, posing a problem for animals that rely on their vocalizations for communication and navigation. A simple behavioral strategy to combat acoustic interference would be to restrict call emissions to periods of low-amplitude or no noise. Using audio playback and computational tools for the automated detection of over 2.5 million vocalizations from groups of freely vocalizing bats, we show that bats (Carollia perspicillata) can dynamically adapt the timing of their calls to avoid acoustic jamming in both predictably and unpredictably patterned noise. This study demonstrates that bats spontaneously seek out temporal windows of opportunity for vocalizing in acoustically crowded environments, providing a mechanism for efficient echolocation and communication in cluttered acoustic landscapes.
Collapse
Affiliation(s)
- Ava Kiai
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany.
| | - Jan Clemens
- European Neuroscience Center, Göttingen, Germany
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - David Poeppel
- Ernst Strüngmann Institute, Frankfurt am Main, Germany
| | - Julio Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Anthropogenic noise impairs cooperation in bottlenose dolphins. Curr Biol 2023; 33:749-754.e4. [PMID: 36638798 DOI: 10.1016/j.cub.2022.12.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Understanding the impact of human disturbance on wildlife populations is of societal importance,1 with anthropogenic noise known to impact a range of taxa, including mammals,2 birds,3 fish,4 and invertebrates.5 While animals are known to use acoustic and other behavioral mechanisms to compensate for increasing noise at the individual level, our understanding of how noise impacts social animals working together remains limited. Here, we investigated the effect of noise on coordination between two bottlenose dolphins performing a cooperative task. We previously demonstrated that the dolphin dyad can use whistles to coordinate their behavior, working together with extreme precision.6 By equipping each dolphin with a sound-and-movement recording tag (DTAG-37) and exposing them to increasing levels of anthropogenic noise, we show that both dolphins nearly doubled their whistle durations and increased whistle amplitude in response to increasing noise. While these acoustic compensatory mechanisms are the same as those frequently used by wild cetaceans,8,9,10,11,12,13 they were insufficient to overcome the effect of noise on behavioral coordination. Indeed, cooperative task success decreased in the presence of noise, dropping from 85% during ambient noise control trials to 62.5% during the highest noise exposure. This is the first study to demonstrate in any non-human species that noise impairs communication between conspecifics performing a cooperative task. Cooperation facilitates vital functions across many taxa and our findings highlight the need to account for the impact of disturbance on functionally important group tasks in wild animal populations.
Collapse
|
4
|
Watson SK, Filippi P, Gasparri L, Falk N, Tamer N, Widmer P, Manser M, Glock H. Optionality in animal communication: a novel framework for examining the evolution of arbitrariness. Biol Rev Camb Philos Soc 2022; 97:2057-2075. [PMID: 35818133 PMCID: PMC9795909 DOI: 10.1111/brv.12882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022]
Abstract
A critical feature of language is that the form of words need not bear any perceptual similarity to their function - these relationships can be 'arbitrary'. The capacity to process these arbitrary form-function associations facilitates the enormous expressive power of language. However, the evolutionary roots of our capacity for arbitrariness, i.e. the extent to which related abilities may be shared with animals, is largely unexamined. We argue this is due to the challenges of applying such an intrinsically linguistic concept to animal communication, and address this by proposing a novel conceptual framework highlighting a key underpinning of linguistic arbitrariness, which is nevertheless applicable to non-human species. Specifically, we focus on the capacity to associate alternative functions with a signal, or alternative signals with a function, a feature we refer to as optionality. We apply this framework to a broad survey of findings from animal communication studies and identify five key dimensions of communicative optionality: signal production, signal adjustment, signal usage, signal combinatoriality and signal perception. We find that optionality is widespread in non-human animals across each of these dimensions, although only humans demonstrate it in all five. Finally, we discuss the relevance of optionality to behavioural and cognitive domains outside of communication. This investigation provides a powerful new conceptual framework for the cross-species investigation of the origins of arbitrariness, and promises to generate original insights into animal communication and language evolution more generally.
Collapse
Affiliation(s)
- Stuart K. Watson
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Piera Filippi
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of PhilosophyUniversity of ZurichZurichbergstrasse 438044ZürichSwitzerland
| | - Luca Gasparri
- Department of PhilosophyUniversity of ZurichZurichbergstrasse 438044ZürichSwitzerland,Univ. Lille, CNRS, UMR 8163 – STL – Savoirs Textes LangageF‐59000LilleFrance
| | - Nikola Falk
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Nicole Tamer
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland
| | - Paul Widmer
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland
| | - Marta Manser
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Hans‐Johann Glock
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of PhilosophyUniversity of ZurichZurichbergstrasse 438044ZürichSwitzerland
| |
Collapse
|
5
|
Zaffaroni-Caorsi V, Both C, Márquez R, Llusia D, Narins P, Debon M, Borges-Martins M. Effects of anthropogenic noise on anuran amphibians. BIOACOUSTICS 2022. [DOI: 10.1080/09524622.2022.2070543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Valentina Zaffaroni-Caorsi
- Programa de Pós–Graduação em Biologia Animal, Dep. de Zoologia, Inst. de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Ambiente, University of TrentoC3A Centro Agricoltura, Alimenti e, Trento, Italy
| | - Camila Both
- Departamento Interdiscipinar, Universidade Federal do Rio Grande do Sul, Tramandaí, RS, Brazil
| | - Rafael Márquez
- Biología Evolutiva, Museo Nacional de Ciencias Naturales-CSICFonoteca Zoológica. Dept. de Biodiversidad y, Madrid, Spain
| | - Diego Llusia
- Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid (UAM), Ciudad Universitaria de Cantoblanco, Madrid, Spain
- Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM)Centro de Investigación en Biodiversidad y , Madrid, Spain
- Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de GoiásLaboratório de Herpetologia e, Goiânia, Brazil
| | - Peter Narins
- Departments of Integrative Biology & Physiology, and Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Marina Debon
- Dep. de Zoologia, Inst. de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Márcio Borges-Martins
- Programa de Pós–Graduação em Biologia Animal, Dep. de Zoologia, Inst. de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Reed VA, Toth CA, Wardle RN, Gomes DG, Barber JR, Francis CD. Experimentally broadcast ocean surf and river noise alters birdsong. PeerJ 2022; 10:e13297. [PMID: 35602893 PMCID: PMC9121869 DOI: 10.7717/peerj.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
Anthropogenic noise and its effects on acoustic communication have received considerable attention in recent decades. Yet, the natural acoustic environment's influence on communication and its role in shaping acoustic signals remains unclear. We used large-scale playbacks of ocean surf in coastal areas and whitewater river noise in riparian areas to investigate how natural sounds influences song structure in six songbird species. We recorded individuals defending territories in a variety of acoustic conditions across 19 study sites in California and 18 sites in Idaho. Acoustic characteristics across the sites included naturally quiet 'control' sites, 'positive control' sites that were adjacent to the ocean or a whitewater river and thus were naturally noisy, 'phantom' playback sites that were exposed to continuous broadcast of low-frequency ocean surf or whitewater noise, and 'shifted' playback sites with continuous broadcast of ocean surf or whitewater noise shifted up in frequency. We predicted that spectral and temporal song structure would generally correlate with background sound amplitude and that signal features would differ across site types based on the spectral profile of the acoustic environment. We found that the ways in which song structure varied with background acoustics were quite variable from species to species. For instance, in Idaho both the frequency bandwidth and duration of lazuli bunting (Passerina amoena) and song sparrow (Melospiza melodia) songs decreased with elevated background noise, but these song features were unrelated to background noise in the warbling vireo (Vireo gilvus), which tended to increase both the minimum and maximum frequency of songs with background noise amplitude. In California, the bandwidth of the trill of white-crowned sparrow (Zonotrichia leucophrys) song decreased with background noise amplitude, matching results of previous studies involving both natural and anthropogenic noise. In contrast, wrentit (Chamaea fasciata) song bandwidth was positively related to the amplitude of background noise. Although responses were quite heterogeneous, song features of all six species varied with amplitude and/or frequency of background noise. Collectively, these results provide strong evidence that natural soundscapes have long influenced vocal behavior. More broadly, the evolved behavioral responses to the long-standing challenges presented by natural sources of noise likely explain the many responses observed for species communicating in difficult signal conditions presented by human-made noise.
Collapse
Affiliation(s)
- Veronica A. Reed
- Department of Biological Sciences, California Polytechnic State University - San Luis Obispo, San Luis Obispo, CA, United States of America
| | - Cory A. Toth
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Ryan N. Wardle
- Department of Biological Sciences, California Polytechnic State University - San Luis Obispo, San Luis Obispo, CA, United States of America
| | - Dylan G.E. Gomes
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America,Hatfield Marine Science Center, Oregon State University, Newport, OR, United States of America
| | - Jesse R. Barber
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Clinton D. Francis
- Department of Biological Sciences, California Polytechnic State University - San Luis Obispo, San Luis Obispo, CA, United States of America
| |
Collapse
|
7
|
To AWY, Dingle C, Collins SA. Multiple constraints on urban bird communication: both abiotic and biotic noise shape songs in cities. Behav Ecol 2021; 32:1042-1053. [PMID: 34690550 PMCID: PMC8528541 DOI: 10.1093/beheco/arab058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/16/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
Ambient noise can cause birds to adjust their songs to avoid masking. Most studies investigate responses to a single noise source (e.g., low-frequency traffic noise, or high-frequency insect noise). Here, we investigated the effects of both anthropogenic and insect noise on vocalizations of four common bird species in Hong Kong. Common Tailorbirds (Orthotomus sutorius) and Eurasian Tree Sparrows (Passer montanus) both sang at a higher frequency in urban areas compared to peri-urban areas. Red-whiskered Bulbuls (Pycnonotus jocosus) in urban areas shifted the only first note of their song upwards. Swinhoe's White-eye (Zosterops simplex) vocalization changes were correlated with noise level, but did not differ between the peri-urban and urban populations. Insect noise caused the Eurasian Tree Sparrow to reduce both maximum, peak frequency, and overall bandwidth of vocalizations. Insect noise also led to a reduction in maximum frequency in Red-whiskered bulbuls. The presence of both urban noise and insect noise affected the sound of the Common Tailorbirds and Eurasian Tree Sparrows; in urban areas, they no longer increased their minimum song frequency when insect sounds were also present. These results highlight the complexity of the soundscape in urban areas. The presence of both high- and low-frequency ambient noise may make it difficult for urban birds to avoid signal masking while still maintaining their fitness in noisy cities.
Collapse
Affiliation(s)
- Ann W Y To
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, Devon, UK
| | - Caroline Dingle
- School of Biological Sciences, Faculty of Science, University of Hong Kong, Pokfulam Road, Hong Kong
| | - Sarah A Collins
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, Devon, UK
| |
Collapse
|
8
|
More than noise: light, moon phase, and singing behavior in a passerine. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Fisher DN, Kilgour RJ, Siracusa ER, Foote JR, Hobson EA, Montiglio PO, Saltz JB, Wey TW, Wice EW. Anticipated effects of abiotic environmental change on intraspecific social interactions. Biol Rev Camb Philos Soc 2021; 96:2661-2693. [PMID: 34212487 DOI: 10.1111/brv.12772] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Social interactions are ubiquitous across the animal kingdom. A variety of ecological and evolutionary processes are dependent on social interactions, such as movement, disease spread, information transmission, and density-dependent reproduction and survival. Social interactions, like any behaviour, are context dependent, varying with environmental conditions. Currently, environments are changing rapidly across multiple dimensions, becoming warmer and more variable, while habitats are increasingly fragmented and contaminated with pollutants. Social interactions are expected to change in response to these stressors and to continue to change into the future. However, a comprehensive understanding of the form and magnitude of the effects of these environmental changes on social interactions is currently lacking. Focusing on four major forms of rapid environmental change currently occurring, we review how these changing environmental gradients are expected to have immediate effects on social interactions such as communication, agonistic behaviours, and group formation, which will thereby induce changes in social organisation including mating systems, dominance hierarchies, and collective behaviour. Our review covers intraspecific variation in social interactions across environments, including studies in both the wild and in laboratory settings, and across a range of taxa. The expected responses of social behaviour to environmental change are diverse, but we identify several general themes. First, very dry, variable, fragmented, or polluted environments are likely to destabilise existing social systems. This occurs as these conditions limit the energy available for complex social interactions and affect dissimilar phenotypes differently. Second, a given environmental change can lead to opposite responses in social behaviour, and the direction of the response often hinges on the natural history of the organism in question. Third, our review highlights the fact that changes in environmental factors are not occurring in isolation: multiple factors are changing simultaneously, which may have antagonistic or synergistic effects, and more work should be done to understand these combined effects. We close by identifying methodological and analytical techniques that might help to study the response of social interactions to changing environments, highlight consistent patterns among taxa, and predict subsequent evolutionary change. We expect that the changes in social interactions that we document here will have consequences for individuals, groups, and for the ecology and evolution of populations, and therefore warrant a central place in the study of animal populations, particularly in an era of rapid environmental change.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, U.K
| | - R Julia Kilgour
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, U.S.A
| | - Erin R Siracusa
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Stocker Road, Exeter, EX4 4PY, U.K
| | - Jennifer R Foote
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH, 45221, U.S.A
| | - Pierre-Olivier Montiglio
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue Président-Kennedy, Montréal, QC, H2X 3X8, Canada
| | - Julia B Saltz
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| | - Tina W Wey
- Maelstrom Research, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montréal, QC, H3G 1A4, Canada
| | - Eric W Wice
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| |
Collapse
|
10
|
Kunc HP, Schmidt R. Species sensitivities to a global pollutant: A meta-analysis on acoustic signals in response to anthropogenic noise. GLOBAL CHANGE BIOLOGY 2021; 27:675-688. [PMID: 33289307 PMCID: PMC7839775 DOI: 10.1111/gcb.15428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/06/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenically driven environmental changes affect our planet at an unprecedented rate. Among these changes are those in the acoustic environment caused by anthropogenic noise, which can affect both animals and humans. In many species, acoustic communication plays a crucial role to maintain social relationships by exchanging information via acoustic signals. However, how species relying on acoustic communication differ in their adjustments to anthropogenic noise is little understood. Yet, this is crucial because protecting species effectively depends on our capability to predict how species differ in their response to human-induced environmental changes. Using a phylogenetically controlled meta-analysis, we quantified differences in adjustments of acoustic signals to anthropogenic noise among species. The effect sizes included in the analysis were obtained from noise exposure experiments, as only carefully controlled experiments allow to establish cause-and-effect relationships. We found that animals changed acoustic signals when exposed to noise, but the magnitude and the direction of adjustments differed among species. Given the importance of communication in the animal kingdom, these adjustments can affect social relationships in many species. The diversity of responses among species highlights the necessity to assess the effect of environmental stressors not only for a few species, because an effect may be positive in one species but negative in another depending on the species' biology. Thus, an effective conservation approach to protect different species is to preserve natural soundscapes of ecosystems to which species have adapted to by reducing or mitigating the emission of anthropogenic noise into the environment.
Collapse
Affiliation(s)
| | - Rouven Schmidt
- School of Biological SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
11
|
Hernani Lineros LM, Chimènes A, Maille A, Dingess K, Rumiz DI, Adret P. Response of Bolivian gray titi monkeys ( Plecturocebus donacophilus) to an anthropogenic noise gradient: behavioral and hormonal correlates. PeerJ 2020; 8:e10417. [PMID: 33240684 PMCID: PMC7682439 DOI: 10.7717/peerj.10417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
Worldwide urban expansion and deforestation have caused a rapid decline of non-human primates in recent decades. Yet, little is known to what extent these animals can tolerate anthropogenic noise arising from roadway traffic and human presence in their habitat. We studied six family groups of titis residing at increasing distances from a busy highway, in a park promoting ecotourism near Santa Cruz de la Sierra, Bolivia. We mapped group movements, sampled the titis’ behavior, collected fecal samples from each study group and conducted experiments in which we used a mannequin simulating a human intrusion in their home range. We hypothesized that groups of titi monkeys exposed to higher levels of anthropogenic noise and human presence would react weakly to the mannequin and show higher concentrations of fecal cortisol compared with groups in least perturbed areas. Sound pressure measurements and systematic monitoring of soundscape inside the titis’ home ranges confirmed the presence of a noise gradient, best characterized by the root-mean-square (RMS) and median amplitude (M) acoustic indices; importantly, both anthropogenic noise and human presence co-varied. Study groups resided in small, overlapping home ranges and they spent most of their time resting and preferentially used the lower forest stratum for traveling and the higher levels for foraging. Focal sampling analysis revealed that the time spent moving by adult pairs was inversely correlated with noise, the behavioral change occurring within a gradient of minimum sound pressures ranging from 44 dB(A) to 52 dB(A). Validated enzyme-immunoassays of fecal samples however detected surprisingly low cortisol concentrations, unrelated to the changes observed in the RMS and M indices. Finally, titis’ response to the mannequin varied according to our expectation, with alarm calling being greater in distant groups relative to highway. Our study thus indicates reduced alarm calling through habituation to human presence and suggests a titis’ resilience to anthropogenic noise with little evidence of physiological stress.
Collapse
Affiliation(s)
- Lucero M Hernani Lineros
- Zoología Vertebrados, Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia.,Carrera de Biología, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Amélie Chimènes
- Unité Eco-anthropologie UMR 7206, Museum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Audrey Maille
- Unité Eco-anthropologie UMR 7206, Museum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | | | - Damián I Rumiz
- Zoología Vertebrados, Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia.,Fundación Simón I. Patiño, Santa Cruz de la Sierra, Bolivia
| | - Patrice Adret
- Zoología Vertebrados, Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
| |
Collapse
|
12
|
Passos MFDO, Beirão MV, Midamegbe A, Duarte RHL, Young RJ, de Azevedo CS. Impacts of noise pollution on the agonistic interactions of the saffron finch (Sicalis flaveola Linnaeus, 1766). Behav Processes 2020; 180:104222. [PMID: 32828808 DOI: 10.1016/j.beproc.2020.104222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/29/2022]
Abstract
Impacts of noise pollution are recognized as a source of stress for animals and as a form of environmental degradation. Behavioural changes associated with noise, such as reduction of reproductive success, reduction in feeding behaviour, increase in vigilance behaviours and inability to detect environment acoustic signals, are observed. The aim of the present study was to evaluate how noise influences aggressive behaviour of the saffron finch (Sicalis flaveola). We conducted tests of territoriality-aggressiveness against conspecifics. Seven individuals were tested, with six tests per individual being conducted in two treatments (traffic pollution and ambient noise), totalling 84 tests. The noise treatment significantly altered the agonistic interactions of the saffron finches, with territorial males exhibiting less aggressive behaviours towards intruders.
Collapse
Affiliation(s)
- Marcela Fortes de Oliveira Passos
- Departamento de Evolução, Biodiversidade e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/n, Bauxita, Cep: 35400-000, Ouro Preto, Minas Gerais, Brasil.
| | - Marina Vale Beirão
- Departamento de Evolução, Biodiversidade e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/n, Bauxita, Cep: 35400-000, Ouro Preto, Minas Gerais, Brasil.
| | - Afiwa Midamegbe
- Instituto de Ciências Biológicas e da Saúde, Pontifícia Universidade Católica de Minas Gerais. Avenida Dom José Gaspar, 500, Coração Eucarístico. Cep: 30535-901, Belo Horizonte, Brazil.
| | - Renan Henriques Lage Duarte
- Instituto de Ciências Biológicas e da Saúde, Pontifícia Universidade Católica de Minas Gerais. Avenida Dom José Gaspar, 500, Coração Eucarístico. Cep: 30535-901, Belo Horizonte, Brazil.
| | - Robert John Young
- University of Salford Manchester, Peel Building - Room G51, Salford, M5 4WT, United Kingdom.
| | - Cristiano Schetini de Azevedo
- Departamento de Evolução, Biodiversidade e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/n, Bauxita, Cep: 35400-000, Ouro Preto, Minas Gerais, Brasil.
| |
Collapse
|
13
|
Akçay Ç, Porsuk YK, Avşar A, Çabuk D, Bilgin CC. Song overlapping, noise, and territorial aggression in great tits. Behav Ecol 2020. [DOI: 10.1093/beheco/araa030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Communication often happens in noisy environments where interference from the ambient noise and other signalers may reduce the effectiveness of signals which may lead to more conflict between interacting individuals. Signalers may also evolve behaviors to interfere with signals of opponents, for example, by temporally overlapping them with their own, such as the song overlapping behavior that is seen in some songbirds during aggressive interactions. Song overlapping has been proposed to be a signal of aggressive intent, but few studies directly examined the association between song overlapping and aggressive behaviors of the sender. In the present paper, we examined whether song overlapping and ambient noise are associated positively with aggressive behaviors. We carried out simulated territorial intrusions in a population of great tits (Parus major) living in an urban–rural gradient to assess signaling and aggressive behaviors. Song overlapping was associated negatively with aggressive behaviors males displayed against a simulated intruder. This result is inconsistent with the hypothesis that song overlapping is an aggressive signal in this species. Ambient noise levels were associated positively with aggressive behaviors but did not correlate with song rate, song duration, or song overlapping. Great tits in noisy urban habitats may display higher levels of aggressive behaviors due to either interference of noise in aggressive communication or another indirect effect of noise.
Collapse
Affiliation(s)
- Çağlar Akçay
- Department of Psychology, Koç University, Rumelifeneri Caddesi, Sarıyer, Istanbul, Turkey
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Y Kağan Porsuk
- Department of Psychology, Koç University, Rumelifeneri Caddesi, Sarıyer, Istanbul, Turkey
| | - Alican Avşar
- Department of Biological Sciences, Middle East Technical University, Üniversiteler, Dumlupınar Blv. No:1, Ankara, Turkey
| | - Dilan Çabuk
- Department of Psychology, Koç University, Rumelifeneri Caddesi, Sarıyer, Istanbul, Turkey
| | - C Can Bilgin
- Department of Biological Sciences, Middle East Technical University, Üniversiteler, Dumlupınar Blv. No:1, Ankara, Turkey
| |
Collapse
|
14
|
Potvin DA, Anderson MK, Levengood AL. Effects of ecotourism on eastern yellow robin (Eopsaltria australis) vocal behaviour. AUST J ZOOL 2020. [DOI: 10.1071/zo20102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ecotourism attempts to provide sustainable tourism with a focus on experiencing natural areas to foster environmental appreciation. However, it is often seen as a paradox, since associated infrastructure and activity can have detrimental effects on wildlife. One aspect that has been overlooked in this context is the potential impact of ecotourists on vocal behaviour, especially of birds. Many birds are susceptible to anthropogenic noise, avoiding noisy areas, or changing vocal activity within them. We used passive recording techniques to quantify vocal behaviours of a native Australian songbird, the eastern yellow robin, at an ecotourist resort to investigate how tourist presence might affect vocal behaviours. We found that during peak tourism seasonal periods, robins sang fewer songs, and these songs were shorter. However, this same pattern was observed on weekdays compared with weekends, when tourist numbers are generally lower. This seemingly contradictory pattern may be explained by the fact that maintenance of the resort grounds occurred predominantly on weekdays, with noise levels comparable to those detected during periods of high tourism. Thus, ecotourism infrastructure can have layered effects on bird vocal activity: tourist numbers as well as maintenance practices should be considered within the context of local wildlife conservation.
Collapse
|
15
|
Grabarczyk EE, Gill SA. Anthropogenic noise affects male house wren response to but not detection of territorial intruders. PLoS One 2019; 14:e0220576. [PMID: 31365593 PMCID: PMC6668836 DOI: 10.1371/journal.pone.0220576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022] Open
Abstract
Anthropogenic noise decreases signal active space, or the area over which male bird song can be detected in the environment. For territorial males, noise may make it more difficult to detect and assess territorial challenges, which in turn may increase defense costs and influence whether males maintain territory ownership. We tested the hypothesis that noise affects the ability of male house wrens (Troglodytes aedon) near active nests to detect intruders and alters responses to them. We broadcast pre-recorded male song and pink noise on territories to simulate intrusions with and without noise, as well as to noise alone. We measured detection by how long males took to sing or approach the speaker after the start of a playback. To measure whether playbacks changed male behavior, we compared their vocal responses before and during treatments, as well as compared mean vocal responses and the number of flyovers and attacks on the speaker during treatments. Noise did not affect a male’s ability to detect an intruder on his territory. Males altered their responses to simulated intruders with and without noise compared to the noise-only treatment by singing longer songs at faster rates. Males increased peak frequency of songs during intrusions without noise compared to noise-only treatments, but frequency during intruder plus noise treatments did not differ from either. When confronting simulated intruders in noise, males increased the number of attacks on the speaker compared to intruders without noise, possibly because they were less able to assess intruders via songs and relied on close encounters for information. Although noise did not affect intruder detection, noise affected some aspects of singing and aggressive responses, which may be related to the challenge of discriminating and assessing territorial threats under elevated noise.
Collapse
Affiliation(s)
- Erin E. Grabarczyk
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States of America
- * E-mail:
| | - Sharon A. Gill
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States of America
| |
Collapse
|
16
|
Kareklas K, Wilson J, Kunc HP, Arnott G. Signal complexity communicates aggressive intent during contests, but the process is disrupted by noise. Biol Lett 2019; 15:20180841. [PMID: 30991914 DOI: 10.1098/rsbl.2018.0841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Contestants use displays to signal their aggressive intent and settle disputes before they escalate. For birds, this is often in the form of song, which can vary in structural complexity. The role of song complexity in signalling aggressive intent has not been fully established, and its efficacy could be influenced by background noise levels. Using playback experiments, we found that in European robins, Erithacus rubecula, song complexity signalled sender aggression and affected receiver response. However, increased noise impacted the ability of contestants to adjust response based on opponent song complexity. These findings provide new evidence regarding the use of acoustic signal complexity for assessing opponent aggression and that noise can influence contest behaviour by interrupting this process, which could impose fitness consequences.
Collapse
Affiliation(s)
- Kyriacos Kareklas
- School of Biological Sciences, Queen's University Belfast , 97 Lisburn Road, Belfast BT9 7BL , UK
| | - James Wilson
- School of Biological Sciences, Queen's University Belfast , 97 Lisburn Road, Belfast BT9 7BL , UK
| | - Hansjoerg P Kunc
- School of Biological Sciences, Queen's University Belfast , 97 Lisburn Road, Belfast BT9 7BL , UK
| | - Gareth Arnott
- School of Biological Sciences, Queen's University Belfast , 97 Lisburn Road, Belfast BT9 7BL , UK
| |
Collapse
|
17
|
Bats increase vocal amplitude and decrease vocal complexity to mitigate noise interference during social communication. Anim Cogn 2019; 22:199-212. [DOI: 10.1007/s10071-018-01235-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/11/2022]
|
18
|
Gurule-Small GA, Tinghitella RM. Developmental experience with anthropogenic noise hinders adult mate location in an acoustically signalling invertebrate. Biol Lett 2018; 14:rsbl.2017.0714. [PMID: 29491025 DOI: 10.1098/rsbl.2017.0714] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/05/2018] [Indexed: 11/12/2022] Open
Abstract
Phenotypic plasticity facilitates survival and reproduction in rapidly changing and novel environments. Traffic noise spectrally overlaps with (i.e. masks) the sounds used by many acoustically signalling organisms to locate and secure mates. To determine if pre-reproductive exposure to noise improves adult performance in noisy environments, we reared field crickets (Teleogryllus oceanicus) in one of three noise environments: masking traffic noise, traffic noise from which frequencies that spectrally overlap with the crickets' song were removed (non-masking), or silence. At reproductive maturity, we tested female mate location ability under one of the same three acoustic conditions. We found that exposure to noise during rearing hindered female location of mates, regardless of the acoustic environment at testing. Females reared in masking noise took 80% longer than females reared in silence to locate a simulated singing male who was less than 1 m away. Impaired mate location ability can be added to a growing list of fitness costs associated with anthropogenic noise, alongside reductions in pairing success, nesting success and offspring survival.
Collapse
Affiliation(s)
| | - Robin M Tinghitella
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
19
|
Bent AM, Ings TC, Mowles SL. Anthropogenic noise disrupts mate searching in Gryllus bimaculatus. Behav Ecol 2018. [DOI: 10.1093/beheco/ary126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Adam M Bent
- Department of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK
| | - Thomas C Ings
- Department of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK
| | - Sophie L Mowles
- Department of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK
| |
Collapse
|
20
|
Curry CM, Des Brisay PG, Rosa P, Koper N. Noise Source and Individual Physiology Mediate Effectiveness of Bird Songs Adjusted to Anthropogenic Noise. Sci Rep 2018; 8:3942. [PMID: 29500452 PMCID: PMC5834586 DOI: 10.1038/s41598-018-22253-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
Anthropogenic noise is a pervasive pollutant altering behaviour of wildlife that communicates acoustically. Some species adjust vocalisations to compensate for noise. However, we know little about whether signal adjustments improve communication in noise, the extent to which effectiveness of adjustments varies with noise source, or how individual variation in physiology varies with response capacity. We played noise-adjusted and unadjusted songs to wild Passerculus sandwichensis (Savannah Sparrows) after measurements of adrenocortical responsiveness of individuals. Playbacks using songs adjusted to noisy environments were effective in restoring appropriate conspecific territorial aggression behaviours in some altered acoustic environments. Surprisingly, however, levels of adrenocortical responsiveness that reduced communication errors at some types of infrastructure were correlated with increased errors at others. Song adjustments that were effective in communicating for individuals with lower adrenocortical responsiveness at pumpjacks were not effective at screwpumps and vice versa. Our results demonstrate that vocal adjustments can sometimes allow birds to compensate for disruptions in communication caused by anthropogenic noise, but that physiological variation among receivers may alter effectiveness of these adjustments. Thus mitigation strategies to minimize anthropogenic noise must account for both acoustic and physiological impacts of infrastructure.
Collapse
Affiliation(s)
- Claire M Curry
- Natural Resources Institute, University of Manitoba, 70 Dysart Road, 303 Sinnott Building, Winnipeg, Manitoba, R3T 2M7, Canada. .,Oklahoma Biological Survey, University of Oklahoma, Norman, OK, USA.
| | - Paulson G Des Brisay
- Natural Resources Institute, University of Manitoba, 70 Dysart Road, 303 Sinnott Building, Winnipeg, Manitoba, R3T 2M7, Canada
| | - Patricia Rosa
- Natural Resources Institute, University of Manitoba, 70 Dysart Road, 303 Sinnott Building, Winnipeg, Manitoba, R3T 2M7, Canada
| | - Nicola Koper
- Natural Resources Institute, University of Manitoba, 70 Dysart Road, 303 Sinnott Building, Winnipeg, Manitoba, R3T 2M7, Canada
| |
Collapse
|
21
|
LaZerte SE, Slabbekoorn H, Otter KA. Territorial black-capped chickadee males respond faster to high- than to low-frequency songs in experimentally elevated noise conditions. PeerJ 2017; 5:e3257. [PMID: 28462051 PMCID: PMC5410156 DOI: 10.7717/peerj.3257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/31/2017] [Indexed: 11/30/2022] Open
Abstract
Low-frequency urban noise can interfere with avian communication through masking. Some species are able to shift the frequency of their vocalizations upwards in noisy conditions, which may reduce the effects of masking. However, results from playback studies investigating whether or not such vocal changes improve audibility in noisy conditions are not clear; the responses of free-ranging individuals to shifted signals are potentially confounded by functional trade-offs between masking-related audibility and frequency-dependent signal quality. Black-capped chickadees (Poecile atricapillus) naturally sing their songs at several different frequencies as they pitch-shift to match conspecifics during song-matching contests. They are also known to switch to higher song frequencies in response to experimental noise exposure. Each male produces both high- and low-frequency songs and absolute frequency is not a signal of aggression or dominance, making this an interesting species in which to test whether higher-frequency songs are more audible than lower-frequency songs in noisy conditions. We conducted playback studies across southern and central British Columbia, Canada, using paired song stimuli (high- vs low-frequency songs, n = 24 pairs) embedded in synthetic background noise created to match typical urban sound profiles. Over the course of each playback, the signal-to-noise ratio of the song stimuli was gradually increased by raising the amplitude of the song stimuli while maintaining background noise at a constant amplitude. We evaluated variation in how quickly and aggressively territorial males reacted to each of the paired stimuli. We found that males responded more quickly to playbacks of high- than low-frequency songs when high-frequency songs were presented first, but not when low-frequency songs were first. This difference may be explained by high-frequency songs being more audible combined with a carry-over effect resulting in slower responses to the second stimulus due to habituation. We observed no difference in overall aggression between stimuli. These results suggest that high-frequency songs may be more audible under noisy conditions.
Collapse
Affiliation(s)
- Stefanie E LaZerte
- Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Hans Slabbekoorn
- Behavioural Biology, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Ken A Otter
- Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
22
|
Morris-Drake A, Bracken AM, Kern JM, Radford AN. Anthropogenic noise alters dwarf mongoose responses to heterospecific alarm calls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:476-483. [PMID: 28153414 DOI: 10.1016/j.envpol.2017.01.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Anthropogenic noise is an evolutionarily novel and widespread pollutant in both terrestrial and aquatic habitats. Despite increasing evidence that the additional noise generated by human activities can affect vocal communication, the majority of research has focused on the use of conspecific acoustic information, especially sexual signals. Many animals are known to eavesdrop on the alarm calls produced by other species, enhancing their likelihood of avoiding predation, but how this use of heterospecific information is affected by anthropogenic noise has received little empirical attention. Here, we use two field-based playback experiments on a habituated wild population of dwarf mongooses (Helogale parvula) to determine how anthropogenic noise influences the response of foragers to heterospecific alarm calls. We begin by demonstrating that dwarf mongooses respond appropriately to the alarm calls of sympatric chacma baboons (Papio ursinus) and tree squirrels (Paraxerus cepapi); fleeing only to the latter. We then show that mongoose foragers are less likely to exhibit this flee response to tree squirrel alarm calls during road-noise playback compared to ambient-sound playback. One explanation for the change in response is that noise-induced distraction or stress result in maladaptive behaviour. However, further analysis revealed that road-noise playback results in increased vigilance and that mongooses showing the greatest vigilance increase are those that do not subsequently exhibit a flee response to the alarm call. These individuals may therefore be acting appropriately: if the greater gathering of personal information indicates the absence of an actual predator despite an alarm call, the need to undertake costly fleeing behaviour can be avoided. Either way, our study indicates the potential for anthropogenic noise to interfere with the use of acoustic information from other species, and suggests the importance of considering how heterospecific networks are affected by this global pollutant.
Collapse
Affiliation(s)
- Amy Morris-Drake
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom.
| | - Anna M Bracken
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Julie M Kern
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Andrew N Radford
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| |
Collapse
|
23
|
Sathyan R, Engelbrecht A, Couldridge VC. Morphological, acoustic and genetic divergence in the bladder grasshopperBullacris unicolor. ETHOL ECOL EVOL 2017. [DOI: 10.1080/03949370.2017.1287915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rekha Sathyan
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Adriaan Engelbrecht
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vanessa C.K. Couldridge
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
24
|
Potvin DA, Curcio MT, Swaddle JP, MacDougall-Shackleton SA. Experimental exposure to urban and pink noise affects brain development and song learning in zebra finches (Taenopygia guttata). PeerJ 2016; 4:e2287. [PMID: 27602270 PMCID: PMC4991897 DOI: 10.7717/peerj.2287] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 07/04/2016] [Indexed: 12/04/2022] Open
Abstract
Recently, numerous studies have observed changes in bird vocalizations-especially song-in urban habitats. These changes are often interpreted as adaptive, since they increase the active space of the signal in its environment. However, the proximate mechanisms driving cross-generational changes in song are still unknown. We performed a captive experiment to identify whether noise experienced during development affects song learning and the development of song-control brain regions. Zebra finches (Taeniopygia guttata) were bred while exposed, or not exposed, to recorded traffic urban noise (Study 1) or pink noise (Study 2). We recorded the songs of male offspring and compared these to fathers' songs. We also measured baseline corticosterone and measured the size of song-control brain regions when the males reached adulthood (Study 1 only). While male zebra finches tended to copy syllables accurately from tutors regardless of noise environment, syntax (the ordering of syllables within songs) was incorrectly copied affected by juveniles exposed to noise. Noise did not affect baseline corticosterone, but did affect the size of brain regions associated with song learning: these regions were smaller in males that had been had been exposed to recorded traffic urban noise in early development. These findings provide a possible mechanism by which noise affects behaviour, leading to potential population differences between wild animals occupying noisier urban environments compared with those in quieter habitats.
Collapse
Affiliation(s)
- Dominique A. Potvin
- Research School of Biology, Australian National University,Canberra,ACT,Australia
- Advanced Facility for Avian Research, University of Western Ontario,London,ON,Canada
- Department of Psychology, University of Western Ontario,London,ON,Canada
| | - Michael T. Curcio
- Institute for Integrative Bird Behavior Studies, College of William and Mary,Williamsburg,VA,United States
| | - John P. Swaddle
- Institute for Integrative Bird Behavior Studies, College of William and Mary,Williamsburg,VA,United States
- Centre for Ecology and Conservation, University of Exeter,Exeter,United Kingdom
| | - Scott A. MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario,London,ON,Canada
- Department of Psychology, University of Western Ontario,London,ON,Canada
| |
Collapse
|
25
|
Rosin ZM, Skórka P, Szymański P, Tobolka M, Luczak A, Tryjanowski P. Constant and seasonal drivers of bird communities in a wind farm: implications for conservation. PeerJ 2016; 4:e2105. [PMID: 27547516 PMCID: PMC4957985 DOI: 10.7717/peerj.2105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/13/2016] [Indexed: 11/20/2022] Open
Abstract
Background. One of the most difficult challenges for conservation biology is to reconcile growing human demands for resources with the rising need for protecting nature. Wind farms producing renewable energy have been recognised to be a threat for birds, but clear directives for environmental planning are still missing. Methods. Point counts were performed to study the relationship between eight environmental variables and bird populations in different parts of a year on the largest Polish wind farm between March 2011 and February 2013. Variables potentially related to species richness (Chao 1 estimator) and the abundance of the entire bird community as well as five selected farmland species were analysed with the use of generalized linear mixed models. Results. Some associations between the studied variables and bird populations were season/year specific, while others had a constant direction (positive or negative) across seasons and/or years. The latter were distance to the nearest turbine, field size, number of wind turbines, proximity of settlements and water bodies. Spatial autocorrelation and counting time were significantly correlated with bird population estimates but the directions of these relationships varied among seasons and years. Associations between abundance of individual species and environmental variables were species-specific. Conclusions. The results demonstrated a constant negative relationship between wind turbine proximity and bird numbers. Other environmental variables, such as field size, proximity of settlements and water bodies that also had constant associations with bird populations across seasons may be taken into account when minimizing adverse effects of wind farm development on birds or choosing optimal locations of new turbines.
Collapse
Affiliation(s)
- Zuzanna M Rosin
- Department of Cell Biology, Adam Mickiewicz University in Poznań , Poznań , Poland
| | - Piotr Skórka
- Institute of Nature Conservation, Polish Academy of Sciences , Kraków , Poland
| | - Paweł Szymański
- Department of Behavioural Ecology, Adam Mickiewicz University in Poznań , Poznań , Poland
| | - Marcin Tobolka
- Institute of Zoology, Poznań University of Life Sciences , Poznań , Poland
| | | | - Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences , Poznań , Poland
| |
Collapse
|
26
|
Kleist NJ, Guralnick RP, Cruz A, Francis CD. Anthropogenic noise weakens territorial response to intruder's songs. Ecosphere 2016. [DOI: 10.1002/ecs2.1259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Nathan J. Kleist
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado 80309‐0334 USA
| | - Robert P. Guralnick
- University of Florida Museum of Natural History University of Florida at Gainesville Gainesville Florida 32611‐2710 USA
| | - Alexander Cruz
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado 80309‐0334 USA
| | - Clinton D. Francis
- Department of Biological Sciences California Polytechnic State University San Luis Obispo California 93407 USA
| |
Collapse
|
27
|
|
28
|
Anthropogenic noise is associated with changes in acoustic but not visual signals in red-winged blackbirds. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1928-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
|
30
|
Costello RA, Symes LB. Effects of anthropogenic noise on male signalling behaviour and female phonotaxis in Oecanthus tree crickets. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Schmidt R, Morrison A, Kunc HP. Sexy voices – no choices: male song in noise fails to attract females. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Kunc HP, Lyons GN, Sigwart JD, McLaughlin KE, Houghton JDR. Anthropogenic noise affects behavior across sensory modalities. Am Nat 2014; 184:E93-100. [PMID: 25226190 DOI: 10.1086/677545] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Many species are currently experiencing anthropogenically driven environmental changes. Among these changes, increasing noise levels are specifically a problem for species using acoustic signals (i.e., species relying on signals that use the same sensory modality as anthropogenic noise). Yet many species use other sensory modalities, such as visual and olfactory signals, to communicate. However, we have only little understanding of whether changes in the acoustic environment affect species that use sensory modalities other than acoustic signals. We studied the impact of anthropogenic noise on the common cuttlefish Sepia officinalis, which uses highly complex visual signals. We showed that cuttlefish adjusted their visual displays by changing their color more frequently during a playback of anthropogenic noise, compared with before and after the playback. Our results provide experimental evidence that anthropogenic noise has a marked effect on the behavior of species that are not reliant on acoustic communication. Thus, interference in one sensory channel, in this case the acoustic one, affects signaling in other sensory channels. By considering sensory channels in isolation, we risk overlooking the broader implications of environmental changes for the behavior of animals.
Collapse
Affiliation(s)
- Hansjoerg P Kunc
- Institute for Global Food Security, Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; and Queen's University Marine Laboratory, 12-13 The Strand, Portaferry, County Down BT22 1PF, United Kingdom
| | | | | | | | | |
Collapse
|