1
|
Ortega-Escobar J, Hebets EA, Bingman VP, Wiegmann DD, Gaffin DD. Comparative biology of spatial navigation in three arachnid orders (Amblypygi, Araneae, and Scorpiones). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01612-2. [PMID: 36781447 DOI: 10.1007/s00359-023-01612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
From both comparative biology and translational research perspectives, there is escalating interest in understanding how animals navigate their environments. Considerable work is being directed towards understanding the sensory transduction and neural processing of environmental stimuli that guide animals to, for example, food and shelter. While much has been learned about the spatial orientation behavior, sensory cues, and neurophysiology of champion navigators such as bees and ants, many other, often overlooked animal species possess extraordinary sensory and spatial capabilities that can broaden our understanding of the behavioral and neural mechanisms of animal navigation. For example, arachnids are predators that often return to retreats after hunting excursions. Many of these arachnid central-place foragers are large and highly conducive to scientific investigation. In this review we highlight research on three orders within the Class Arachnida: Amblypygi (whip spiders), Araneae (spiders), and Scorpiones (scorpions). For each, we describe (I) their natural history and spatial navigation, (II) how they sense the world, (III) what information they use to navigate, and (IV) how they process information for navigation. We discuss similarities and differences among the groups and highlight potential avenues for future research.
Collapse
Affiliation(s)
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Verner P Bingman
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Douglas D Gaffin
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
2
|
Baran B, Krzyżowski M, Rádai Z, Francikowski J, Hohol M. Geometry-based navigation in the dark: layout symmetry facilitates spatial learning in the house cricket, Acheta domesticus, in the absence of visual cues. Anim Cogn 2022; 26:755-770. [PMID: 36369419 PMCID: PMC10066172 DOI: 10.1007/s10071-022-01712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
AbstractThe capacity to navigate by layout geometry has been widely recognized as a robust strategy of place-finding. It has been reported in various species, although most studies were performed with vision-based paradigms. In the presented study, we aimed to investigate layout symmetry-based navigation in the house cricket, Acheta domesticus, in the absence of visual cues. For this purpose, we used a non-visual paradigm modeled on the Tennessee Williams setup. We ensured that the visual cues were indeed inaccessible to insects. In the main experiment, we tested whether crickets are capable of learning to localize the centrally positioned, inconspicuous cool spot in heated arenas of various shapes (i.e., circular, square, triangular, and asymmetric quadrilateral). We found that the symmetry of the arena significantly facilitates crickets’ learning to find the cool spot, indicated by the increased time spent on the cool spot and the decreased latency in locating it in subsequent trials. To investigate mechanisms utilized by crickets, we analyzed their approach paths to the spot. We found that crickets used both heuristic and directed strategies of approaching the target, with the dominance of a semi-directed strategy (i.e., a thigmotactic phase preceding direct navigation to the target). We propose that the poor performance of crickets in the asymmetrical quadrilateral arena may be explained by the difficulty of encoding its layout with cues from a single modality.
Collapse
|
3
|
Lehmann KDS, Shogren FG, Fallick M, Watts JC, Schoenberg D, Wiegmann DD, Bingman VP, Hebets EA. Exploring Higher-Order Conceptual Learning in an Arthropod with a Large Multisensory Processing Center. INSECTS 2022; 13:insects13010081. [PMID: 35055924 PMCID: PMC8780652 DOI: 10.3390/insects13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary It is difficult to measure animal intelligence because the definition of ‘intelligence’ varies, and many animals are good at specific tasks used to measure intelligence or cognition. To address this, scientists often look for evidence of common cognitive abilities. One such ability, the ability to learn concepts, is thought to be rare in animals, especially invertebrates. Concepts include the ideas of ‘same’ and ‘different’. These concepts can be applied to anything in the environment while also being independent of those objects and can help animals understand and survive their environment. Amblypygids, a relative of spiders, live in tropical and subtropical areas, are very good learners, and have a large, complex brain region known to process information from multiple senses. We tested whether amblypygids could learn the concept of ‘same’ by training them to move toward a stimulus that matched with an initial stimulus. We also trained some individuals to learn the concept ‘different’ by training them to move toward a non-matching stimulus. When we used new stimuli, the amblypygids did not move toward the correct stimulus significantly more often than the incorrect stimulus, suggesting either they are unable to learn these higher-order concepts or our experimental design failed to elicit that ability. Abstract Comparative cognition aims to understand the evolutionary history and current function of cognitive abilities in a variety of species with diverse natural histories. One characteristic often attributed to higher cognitive abilities is higher-order conceptual learning, such as the ability to learn concepts independent of stimuli—e.g., ‘same’ or ‘different’. Conceptual learning has been documented in honeybees and a number of vertebrates. Amblypygids, nocturnal enigmatic arachnids, are good candidates for higher-order learning because they are excellent associational learners, exceptional navigators, and they have large, highly folded mushroom bodies, which are brain regions known to be involved in learning and memory in insects. In Experiment 1, we investigate if the amblypygid Phrynus marginimaculatus can learn the concept of same with a delayed odor matching task. In Experiment 2, we test if Paraphrynus laevifrons can learn same/different with delayed tactile matching and nonmatching tasks before testing if they can transfer this learning to a novel cross-modal odor stimulus. Our data provide no evidence of conceptual learning in amblypygids, but more solid conclusions will require the use of alternative experimental designs to ensure our negative results are not simply a consequence of the designs we employed.
Collapse
Affiliation(s)
- Kenna D. S. Lehmann
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - Fiona G. Shogren
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - Mariah Fallick
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - James Colton Watts
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
| | - Daniel Schoenberg
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - Daniel D. Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Verner P. Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA;
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Eileen A. Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
- Correspondence:
| |
Collapse
|
4
|
Synaptic Interactions in Scorpion Peg Sensilla Appear to Maintain Chemosensory Neurons within Dynamic Firing Range. INSECTS 2021; 12:insects12100904. [PMID: 34680673 PMCID: PMC8537158 DOI: 10.3390/insects12100904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary Scorpions have unusual taste organs called pectines that they drag over the ground as they walk. Minute, peg-shaped sensilla adorn the ground-facing surfaces of the pectines, and each of these “pegs” contains several chemosensitive neurons and at least one mechanosensitive neuron. Of particular interest is that some of these neurons interact synaptically at the level of the peg sensillum prior to relay to the scorpion brain. Here we use a technique called “conditional cross-interval correlation analysis” to show that heightened activity of two of the neurons appears to induce a third neuron, which in turn inhibits the previous two. We suggest that the dynamics of this simple feedback circuit might serve to maintain the sensory neurons in a sensitive range so that substrate information can be accurately detected and processed, such as during tracking sexual pheromone trails and/or recapitulating home-directed training paths. Abstract Scorpions have elaborate chemo-tactile organs called pectines on their ventral mesosoma. The teeth of the comb-like pectines support thousands of minute projections called peg sensilla (a.k.a. “pegs”), each containing approximately 10 chemosensory neurons. Males use pectines to detect pheromones released by females, and both sexes apparently use pectines to find prey and navigate to home retreats. Electrophysiological recordings from pegs of Paruroctonus utahensis reveal three spontaneously active cells (A1, A2, and B), which appear to interact synaptically. We made long-term extracellular recordings from the bases of peg sensilla and used a combination of conditional cross-interval and conditional interspike-interval analyses to assess the temporal dynamics of the A and B spike trains. Like previous studies, we found that A cells are inhibited by B cells for tens of milliseconds. However, after normalizing our records, we also found clear evidence that the A cells excite the B cells. This simple local circuit appears to maintain the A cells in a dynamic firing range and may have important implications for tracking pheromonal trails and sensing substrate chemistry for navigation.
Collapse
|
5
|
Flanigan KAS, Wiegmann DD, Casto P, Coppola VJ, Flesher NR, Hebets EA, Bingman VP. Visual control of refuge recognition in the whip spider Phrynus marginemaculatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:729-737. [PMID: 34591165 DOI: 10.1007/s00359-021-01509-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 01/06/2023]
Abstract
Amblypygids, or whip spiders, are nocturnally active arachnids which live in structurally complex environments. Whip spiders are excellent navigators that can re-locate a home refuge without relying on visual input. Therefore, an open question is whether visual input can control any aspect of whip spider spatial behavior. In the current study, Phrynus marginemaculatus were trained to locate an escape refuge by discriminating between differently oriented black and white stripes placed either on the walls of a testing arena (frontal discrimination) or on the ceiling of the same testing arena (overhead discrimination). Regardless of the placement of the visual stimuli, the whip spiders were successful in learning the location of the escape refuge. In a follow-up study of the overhead discrimination, occluding the median eyes was found to disrupt the ability of the whip spiders to locate the shelter. The data support the conclusion that whip spiders can rely on vision to learn and recognize an escape shelter. We suggest that visual inputs to the brain's mushroom bodies enable this ability.
Collapse
Affiliation(s)
- Kaylyn A S Flanigan
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA. .,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.
| | - Daniel D Wiegmann
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.,Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Patrick Casto
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.,Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Vincent J Coppola
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Natasha R Flesher
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
6
|
Nelson XJ, Pratt AJ, Aluoch SA, Jackson RR. Effects of phytochemicals on predatory decision making in a spider. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Flanigan KAS, Wiegmann DD, Hebets EA, Bingman VP. Multisensory integration supports configural learning of a home refuge in the whip spider Phrynus marginemaculatus. J Exp Biol 2021; 224:jeb.238444. [PMID: 33436366 DOI: 10.1242/jeb.238444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022]
Abstract
Whip spiders (Amblypygi) reside in structurally complex habitats and are nocturnally active yet display notable navigational abilities. From the theory that uncertainty in sensory inputs should promote multisensory representations to guide behavior, we hypothesized that their navigation is supported by a multisensory and perhaps configural representation of navigational inputs, an ability documented in a few insects and never reported in arachnids. We trained Phrynus marginemaculatus to recognize a home shelter characterized by both discriminative olfactory and tactile stimuli. In tests, subjects readily discriminated between shelters based on the paired stimuli. However, subjects failed to recognize the shelter in tests with either of the component stimuli alone. This result is consistent with the hypothesis that the terminal phase of their navigational behavior, shelter recognition, can be supported by the integration of multisensory stimuli as an enduring, configural representation. We hypothesize that multisensory learning occurs in the whip spiders' extraordinarily large mushroom bodies, which may functionally resemble the hippocampus of vertebrates.
Collapse
Affiliation(s)
- Kaylyn A S Flanigan
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0001, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0001, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA
| | - Verner P Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA .,Department of Psychology, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| |
Collapse
|
8
|
Jumping spiders: An exceptional group for comparative cognition studies. Learn Behav 2021; 49:276-291. [PMID: 33443650 DOI: 10.3758/s13420-020-00445-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 11/08/2022]
Abstract
Several non-mutually exclusive hypotheses have been proposed to explain the evolution of cognition in animals. Broadly, these hypotheses fall under two categories: those that pertain to the selective pressures exerted either by sociality or by the ecological niche in which animals live. We review these ideas and then discuss why the highly visual jumping spiders (Salticidae) are excellent models for investigating how cognitive ability evolves. With few exceptions, these behaviorally complex spiders are non-social, making them ideal candidates to explore ideas pertaining to selection based on habitat complexity and selection based on predatory behavior (foraging niche hypotheses). With the exception of Antarctica, salticids are found in all habitats on Earth, ranging from very complex to barren and simple. While many species are generalist predators, a minority also have specialized predatory behavior and prey specialization on dangerous prey, which has been proposed as an explanation for advanced cognitive ability. As this large group has a diversity of habitats in which it lives, diverse predatory behavior, as well as some "social" species, we argue that salticids are ideal candidates for comparative studies to explore the myriad selection factors acting upon a group well known for their cognitive prowess, despite having miniature brains.
Collapse
|
9
|
Homing in the arachnid taxa Araneae and Amblypygi. Anim Cogn 2020; 23:1189-1204. [PMID: 32894371 DOI: 10.1007/s10071-020-01424-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023]
Abstract
Adequate homing is essential for the survival of any animal when it leaves its home to find prey or a mate. There are several strategies by which homing can be carried out: (a) retrace the outbound path; (b) use a 'cognitive map'; or (c) use path integration (PI). Here, I review the state of the art of research on spiders (Araneae) and whip spiders (Amblypygi) homing behaviour. The main strategy described in the literature as being used by these arachnids is PI. Behavioural and neural substrates of PI are described in a small group of spider families (Agelenidae, Lycosidae, Gnaphosidae, Ctenidae and Theraphosidae) and a whip spider family (Phrynidae). In spiders, the cues used to detect the position of the animal relative to its home are the position of the sun, polarized light patterns, web elasticity and landmarks. In whip spiders, the cues used are olfactory, tactile and, with a more minor role, visual. The use of a magnetic field in whip spiders has been rejected both with field and laboratory studies. Concerning the distance walked in PI, the possibility of using optic flow and idiothetic information in spiders is considered. The studies about outbound and inbound paths in whip spiders seem to suggest they do not follow the PI rules. As a conclusion, these arachnids' navigation relies on multimodal cues. We have detailed knowledge about the sensory origin (visual, olfactory, mechanosensory receptors) of neural information, but we are far from knowing the central neural structures where sensory information is integrated.
Collapse
|
10
|
Casto P, Wiegmann DD, Coppola VJ, Nardi D, Hebets EA, Bingman VP. Vertical-surface navigation in the Neotropical whip spider Paraphrynus laevifrons (Arachnida: Amblypygi). Anim Cogn 2020; 23:1205-1213. [PMID: 32851552 DOI: 10.1007/s10071-020-01420-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick Casto
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.
| | - Daniel D Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | - Vincent J Coppola
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Daniele Nardi
- Department of Psychological Science, Ball State University, Muncie, IN, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Verner P Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
11
|
Predatory behavior and sensory morphology of the whip spider Charinus asturius (Arachnida: Amblypygi). J ETHOL 2020. [DOI: 10.1007/s10164-020-00648-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Wiegmann DD, Casto P, Hebets EA, Bingman VP. Distortion of the local magnetic field appears to neither disrupt nocturnal navigation nor cue shelter recognition in the amblypygidParaphrynus laevifrons. Ethology 2019. [DOI: 10.1111/eth.12985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Daniel D. Wiegmann
- Department of Biological Sciences Bowling Green State University Bowling Green OH USA
- J. P. Scott Center for Neuroscience, Mind and Behavior Bowling Green State University Bowling Green OH USA
| | - Patrick Casto
- Department of Biological Sciences Bowling Green State University Bowling Green OH USA
| | - Eileen A. Hebets
- School of Biological Sciences University of Nebraska‐Lincoln Lincoln NE USA
| | - Verner P. Bingman
- J. P. Scott Center for Neuroscience, Mind and Behavior Bowling Green State University Bowling Green OH USA
- Department of Psychology Bowling Green State University Bowling Green OH USA
| |
Collapse
|
13
|
Santer RD. Olfactory and tactile cues can guide near-distance location of a refuge by whip spiders (Arachnida, Amblypygi). Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Nocturnal navigation by whip spiders: antenniform legs mediate near-distance olfactory localization of a shelter. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Silva NFDS, Fowler-Finn K, Ribeiro Mortara S, Hirata Willemart R. A Neotropical armored harvestman (Arachnida, Opiliones) uses proprioception and vision for homing. BEHAVIOUR 2018. [DOI: 10.1163/1568539x-00003503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Animals use external and/or internal cues to navigate and can show flexibility in cue use if one type of cue is unavailable. We studied the homing ability of the harvestman Heteromitobates discolor (Arachnida, Opiliones) by moving egg-guarding females from their clutches. We tested the importance of vision, proprioception, and olfaction. We predicted that homing would be negatively affected in the absence of these cues, with success being measured by the return of females to their clutches. We restricted proprioception by not allowing females to walk, removed vision by painting the eyes, and removed the odours by removing the clutch and cleaning its surroundings. We found that vision is important for homing, and in the absence of visual cues, proprioception is important. Finally, we found increased homing when eggs were present, and that the time of the day also influenced homing. We highlight vision as a previously overlooked sensory modality in Opiliones.
Collapse
Affiliation(s)
- Norton Felipe dos Santos Silva
- aLaboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Avenida Arlindo Béttio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
- bPrograma de Pós-Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel. 275, Jardim Eldorado, Diadema, SP 09972-270, Brazil
| | - Kasey Fowler-Finn
- cDepartment of Biology, Saint Louis University, 3507 Laclede Avenue, Saint Louis, MO, USA
| | - Sara Ribeiro Mortara
- dPrograma de Pós-Graduação em Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, São Paulo, SP 05508-090, Brazil
| | - Rodrigo Hirata Willemart
- aLaboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Avenida Arlindo Béttio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
- bPrograma de Pós-Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel. 275, Jardim Eldorado, Diadema, SP 09972-270, Brazil
- ePrograma de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, Travessa 14, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
16
|
|
17
|
Development of site fidelity in the nocturnal amblypygid, Phrynus marginemaculatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:313-328. [DOI: 10.1007/s00359-017-1169-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/02/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023]
|
18
|
Bingman VP, Graving JM, Hebets EA, Wiegmann DD. Importance of the antenniform legs, but not vision, for homing by the neotropical whip spider Paraphrynus laevifrons. ACTA ACUST UNITED AC 2016; 220:885-890. [PMID: 28011820 DOI: 10.1242/jeb.149823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022]
Abstract
Amblypygids, or whip spiders, are nocturnal, predatory arthropods that display a robust ability to navigate to their home refuge. Prior field observations and displacement studies in amblypygids demonstrated an ability to home from distances as far away as 10 m. In the current study, micro-transmitters were used to take morning position fixes of individual Paraphrynus laevifrons following an experimental displacement of 10 m from their home refuge. The intention was to assess the relative importance of vision compared with sensory input acquired from the antenniform legs for navigation as well as other aspects of their spatial behavior. Displaced individuals were randomly assigned to three treatment groups: (i) control individuals; (ii) vision-deprived individuals, VD; and (iii) individuals with sensory input from the tips of their antenniform legs compromised, AD. Control and VD subjects were generally successful in returning home, and the direction of their movement on the first night following displacement was homeward oriented. By contrast, AD subjects experienced a complete loss of navigational ability, and movement on the first night indicated no hint of homeward orientation. The data strongly support the hypothesis that sensory input from the tips of the antenniform legs is necessary for successful homing in amblypygids following displacement to an unfamiliar location, and we hypothesize an essential role of olfaction for this navigational ability.
Collapse
Affiliation(s)
- Verner P Bingman
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | - Jacob M Graving
- Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
19
|
Wiegmann DD, Hebets EA, Gronenberg W, Graving JM, Bingman VP. Amblypygids: Model Organisms for the Study of Arthropod Navigation Mechanisms in Complex Environments? Front Behav Neurosci 2016; 10:47. [PMID: 27014008 PMCID: PMC4782058 DOI: 10.3389/fnbeh.2016.00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/26/2016] [Indexed: 11/26/2022] Open
Abstract
Navigation is an ideal behavioral model for the study of sensory system integration and the neural substrates associated with complex behavior. For this broader purpose, however, it may be profitable to develop new model systems that are both tractable and sufficiently complex to ensure that information derived from a single sensory modality and path integration are inadequate to locate a goal. Here, we discuss some recent discoveries related to navigation by amblypygids, nocturnal arachnids that inhabit the tropics and sub-tropics. Nocturnal displacement experiments under the cover of a tropical rainforest reveal that these animals possess navigational abilities that are reminiscent, albeit on a smaller spatial scale, of true-navigating vertebrates. Specialized legs, called antenniform legs, which possess hundreds of olfactory and tactile sensory hairs, and vision appear to be involved. These animals also have enormous mushroom bodies, higher-order brain regions that, in insects, integrate contextual cues and may be involved in spatial memory. In amblypygids, the complexity of a nocturnal rainforest may impose navigational challenges that favor the integration of information derived from multimodal cues. Moreover, the movement of these animals is easily studied in the laboratory and putative neural integration sites of sensory information can be manipulated. Thus, amblypygids could serve as model organisms for the discovery of neural substrates associated with a unique and potentially sophisticated navigational capability. The diversity of habitats in which amblypygids are found also offers an opportunity for comparative studies of sensory integration and ecological selection pressures on navigation mechanisms.
Collapse
Affiliation(s)
- Daniel D Wiegmann
- Department of Biological Sciences, Bowling Green State UniversityBowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State UniversityBowling Green, OH, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska Lincoln, NE, USA
| | | | - Jacob M Graving
- Department of Biological Sciences, Bowling Green State University Bowling Green, OH, USA
| | - Verner P Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State UniversityBowling Green, OH, USA; Department of Psychology, Bowling Green State UniversityBowling Green, OH, USA
| |
Collapse
|
20
|
Territoriality evidenced by asymmetric intruder-holder motivation in an amblypygid. Behav Processes 2015; 122:110-5. [PMID: 26616673 DOI: 10.1016/j.beproc.2015.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/01/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022]
Abstract
Territoriality has an extensive and thorough history of research, but has been difficult to impossible to test empirically in most species. We offer a method for testing for territoriality by measuring the motivation of territory intruders to win contests in controlled trials. We demonstrated this approach by staging paired trials of the Amblypygi Phrynus longipes (Chelicerata: Arachnida). Amblypygids engaged in agonistic interactions after the opportunity to establish a putative territory on one side of an arena. We found that intruders of putative territories had lower motivation to win contests, thus evidencing territoriality. Physical components of individuals (i.e. energy stores) increased the probability of winning the contest for holders but not intruders, thereby providing insight into the differing decision rules opponents use in territory contests. We discuss why alternative hypotheses, including loser-initiator covariation and home field bourgeois advantage, fail empirical tests. We demonstrated that analyzing animal motivation in territorial contests is tractable even for animals where territories are inconspicuous and cues are outside the normal perceptions of researchers.
Collapse
|