1
|
Hoyal Cuthill JF, Guttenberg N, Huertas B. Male and female contributions to diversity among birdwing butterfly images. Commun Biol 2024; 7:774. [PMID: 38951581 PMCID: PMC11217504 DOI: 10.1038/s42003-024-06376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Machine learning (ML) newly enables tests for higher inter-species diversity in visible phenotype (disparity) among males versus females, predictions made from Darwinian sexual selection versus Wallacean natural selection, respectively. Here, we use ML to quantify variation across a sample of > 16,000 dorsal and ventral photographs of the sexually dimorphic birdwing butterflies (Lepidoptera: Papilionidae). Validation of image embedding distances, learnt by a triplet-trained, deep convolutional neural network, shows ML can be used for automated reconstruction of phenotypic evolution achieving measures of phylogenetic congruence to genetic species trees within a range sampled among genetic trees themselves. Quantification of sexual disparity difference (male versus female embedding distance), shows sexually and phylogenetically variable inter-species disparity. Ornithoptera exemplify high embedded male image disparity, diversification of selective optima in fitted multi-peak OU models and accelerated divergence, with cases of extreme divergence in allopatry and sympatry. However, genus Troides shows inverted patterns, including comparatively static male embedded phenotype, and higher female than male disparity - though within an inferred selective regime common to these females. Birdwing shapes and colour patterns that are most phenotypically distinctive in ML similarity are generally those of males. However, either sex can contribute majoritively to observed phenotypic diversity among species.
Collapse
Affiliation(s)
| | | | - Blanca Huertas
- Department of Science, Natural History Museum, London, UK
| |
Collapse
|
2
|
Polic D, Yıldırım Y, Merilaita S, Franzén M, Forsman A. Genetic structure, UV-vision, wing coloration and size coincide with colour polymorphism in Fabriciana adippe butterflies. Mol Ecol 2024; 33:e17272. [PMID: 38240162 DOI: 10.1111/mec.17272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Colour polymorphisms have long served as model systems in evolutionary studies and continue to inform about processes involved in the origin and dynamics of biodiversity. Modern sequencing tools allow for evaluating whether phenotypic differences between morphs reflect genetic differentiation rather than developmental plasticity, and for investigating whether polymorphisms represent intermediate stages of diversification towards speciation. We investigated phenotypic and genetic differentiation between two colour morphs of the butterfly Fabriciana adippe using a combination of ddRAD-sequencing and comparisons of body size, colour patterns and optical properties of bright wing spots. The silvery-spotted adippe form had larger and darker wings and reflected UV light, while the yellow cleodoxa form displayed more green scales and reflected very little UV, showcasing that they constitute distinct and alternative integrated phenotypes. Genomic analyses revealed genetic structuring according to source population, and to colour morph, suggesting that the phenotypic differentiation reflects evolutionary modifications. We report 17 outlier loci associated with colour morph, including ultraviolet-sensitive visual pigment (UVRh1), which is associated with intraspecific communication and mate choice in butterflies. Together with the demonstration that the wings of the adippe (but essentially not the cleodoxa) morph reflect UV light, that UV reflectance is higher in females than males and that morphs differ in wing size, this suggests that these colour morphs might represent genetically integrated phenotypes, possibly adapted to different microhabitats. We propose that non-random mating might contribute to the differentiation and maintenance of the polymorphism.
Collapse
Affiliation(s)
- Daniela Polic
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Sami Merilaita
- Department of Biology, University of Turku, Turku, Finland
| | - Markus Franzén
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
3
|
Tunström K, Woronik A, Hanly JJ, Rastas P, Chichvarkhin A, Warren AD, Kawahara AY, Schoville SD, Ficarrotta V, Porter AH, Watt WB, Martin A, Wheat CW. Evidence for a single, ancient origin of a genus-wide alternative life history strategy. SCIENCE ADVANCES 2023; 9:eabq3713. [PMID: 36947619 PMCID: PMC10032607 DOI: 10.1126/sciadv.abq3713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Understanding the evolutionary origins and factors maintaining alternative life history strategies (ALHS) within species is a major goal of evolutionary research. While alternative alleles causing discrete ALHS are expected to purge or fix over time, one-third of the ~90 species of Colias butterflies are polymorphic for a female-limited ALHS called Alba. Whether Alba arose once, evolved in parallel, or has been exchanged among taxa is currently unknown. Using comparative genome-wide association study (GWAS) and population genomic analyses, we placed the genetic basis of Alba in time-calibrated phylogenomic framework, revealing that Alba evolved once near the base of the genus and has been subsequently maintained via introgression and balancing selection. CRISPR-Cas9 mutagenesis was then used to verify a putative cis-regulatory region of Alba, which we identified using phylogenetic foot printing. We hypothesize that this cis-regulatory region acts as a modular enhancer for the induction of the Alba ALHS, which has likely facilitated its long evolutionary persistence.
Collapse
Affiliation(s)
- Kalle Tunström
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Alyssa Woronik
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - Joseph J. Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Anton Chichvarkhin
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Palchevskogo 17, Vladivostok 690022, Russia
| | - Andrew D. Warren
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent Ficarrotta
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Adam H. Porter
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ward B. Watt
- Department of Biology, University of South Carolina, Columbia, SC 29208, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | | |
Collapse
|
4
|
Komata S, Kajitani R, Itoh T, Fujiwara H. Genomic architecture and functional unit of mimicry supergene in female limited Batesian mimic Papilio butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210198. [PMID: 35694751 PMCID: PMC9189499 DOI: 10.1098/rstb.2021.0198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/17/2022] [Indexed: 11/12/2022] Open
Abstract
It has long been suggested that dimorphic female-limited Batesian mimicry of two closely related Papilio butterflies, Papilio memnon and Papilio polytes, is controlled by supergenes. Whole-genome sequencing, genome-wide association studies and functional analyses have recently identified mimicry supergenes, including the doublesex (dsx) gene. Although supergenes of both the species are composed of highly divergent regions between mimetic and non-mimetic alleles and are located at the same chromosomal locus, they show critical differences in genomic architecture, particularly with or without an inversion: P. polytes has an inversion, but P. memnon does not. This review introduces and compares the detailed genomic structure of mimicry supergenes in two Papilio species, including gene composition, repetitive sequence composition, breakpoint/boundary site structure, chromosomal inversion and linkage disequilibrium. Expression patterns and functional analyses of the respective genes within or flanking the supergene suggest that dsx and other genes are involved in mimetic traits. In addition, structural comparison of the corresponding region for the mimicry supergene among further Papilio species suggests three scenarios for the evolution of the mimicry supergene between the two Papilio species. The structural features revealed in the Papilio mimicry supergene provide insight into the formation, maintenance and evolution of supergenes. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Shinya Komata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
5
|
Shimajiri T, Otaki JM. Phenotypic Plasticity of the Mimetic Swallowtail Butterfly Papilio polytes: Color Pattern Modifications and Their Implications in Mimicry Evolution. INSECTS 2022; 13:insects13070649. [PMID: 35886825 PMCID: PMC9322193 DOI: 10.3390/insects13070649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Diverse butterfly wing color patterns are evolutionary products in response to environmental changes in the past. Environmental stress, such as temperature shock, is known to induce color pattern modifications in various butterfly species, and this phenotypic plasticity plays an important role in color pattern evolution. However, the potential contributions of phenotypic plasticity to mimicry evolution have not been evaluated. Here, we focused on the swallowtail butterfly Papilio polytes, which has nonmimetic and mimetic forms in females, to examine its plastic phenotypes. Cold shock and heat shock treatments in the nonmimetic form induced color pattern modifications that were partly similar to those of the mimetic form, and nonmimetic females were more sensitive than males and mimetic females. These results suggest that phenotypic plasticity in nonmimetic females might have provided a basis of natural selection for mimetic color patterns during evolution. Abstract Butterfly wing color patterns are sensitive to environmental stress, such as temperature shock, and this phenotypic plasticity plays an important role in color pattern evolution. However, the potential contributions of phenotypic plasticity to mimicry evolution have not been evaluated. Here, we focused on the swallowtail butterfly Papilio polytes, which has nonmimetic and mimetic forms in females, to examine its plastic phenotypes. In the nonmimetic form, medial white spots and submarginal reddish spots in the ventral hindwings were enlarged by cold shock but were mostly reduced in size by heat shock. These temperature-shock-induced color pattern modifications were partly similar to mimetic color patterns, and nonmimetic females were more sensitive than males and mimetic females. Unexpectedly, injection of tungstate, a known modification inducer in nymphalid and lycaenid butterflies, did not induce any modification, but fluorescent brightener 28, another inducer discovered recently, induced unique modifications. These results suggest that phenotypic plasticity in nonmimetic females might have provided a basis of natural selection for mimetic color patterns during evolution.
Collapse
|
6
|
Shine R, Brown GP, Goiran C. Frequency-dependent Batesian mimicry maintains colour polymorphism in a sea snake population. Sci Rep 2022; 12:4680. [PMID: 35304528 PMCID: PMC8933499 DOI: 10.1038/s41598-022-08639-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Evolutionary theory suggests that polymorphic traits can be maintained within a single population only under specific conditions, such as negative frequency-dependent selection or heterozygote advantage. Non-venomous turtle-headed sea snakes (Emydocephalus annulatus) living in shallow bays near Noumea in New Caledonia exhibit three colour morphs: black, black-and-white banded, and an intermediate (grey-banded) morph that darkens with age. We recorded morph frequencies during 18 consecutive years of surveys, and found that the numbers of recruits (neonates plus immigrants) belonging to each morph increased in years when that morph was unusually rare in the population, and decreased when that morph was unusually common. Thus, morph frequencies are maintained by negative frequency-dependent selection. We interpret the situation as Batesian mimicry of highly venomous sea snakes (Aipysurus, Hydrophis, Laticauda) that occur in the same bays, and range in colour from black-and-white banded to grey-banded. Consistent with the idea that mimicry may protect snakes from attack by large fish and sea eagles, behavioural studies have shown that smaller fish species in these bays flee from banded snakes but attack black individuals. As predicted by theory, mimetic (banded) morphs are less common than the cryptically-coloured melanic morph.
Collapse
Affiliation(s)
- Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Gregory P Brown
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Claire Goiran
- LabEx Corail & ISEA, Université de la Nouvelle-Calédonie, BP R4, 98851, Nouméa cedex, New Caledonia
| |
Collapse
|
7
|
Omura H, Noguchi T, Ohta S. Chemical identity of cuticular lipid components in the mimetic swallowtail butterfly Papilio polytes. Chem Biodivers 2022; 19:e202100879. [PMID: 35037384 DOI: 10.1002/cbdv.202100879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/14/2022] [Indexed: 11/12/2022]
Abstract
The swallowtail Papilio polytes shows Batesian and female-limited polymorphic mimicry. In Japan, P . polytes females have two different forms: the cyrus form is non-mimetic and resembles males, whereas the polytes form mimics Pachliopta aristolochiae and Byasa ( Atrophaneura ) alcinous as unpalatable models. During mating, P . polytes males use cuticular lipids to distinguish non-mimetic females from conspecific males and sympatric sister species. In this study, we investigated whether compositional differences in cuticular lipids exist between mimetic and non-mimetic females of P . polytes and between mimetic females and their model species. The mimetic and non-mimetic females had nearly identical cuticular lipid profiles, which differed from those of males. The two model species exhibited sexually dimorphic and species-specific cuticular lipid compositions, which were distinctly different from those of mimetic P . polytes females. These results strongly suggest that P . polytes females maintain the identity of cuticular lipid profiles regardless of the mimicry type, and this feature helps males recognize mimetic females as the correct mating partners.
Collapse
Affiliation(s)
- Hisashi Omura
- Hiroshima University: Hiroshima Daigaku, Graduate School of Integrated Sciences for Life, 1-7-1 Kagamiyama, 7398521, Higashihiroshima, JAPAN
| | - Taro Noguchi
- Hiroshima University: Hiroshima Daigaku, Graduate School of Biosphere Science, 1-7-1 Kagamiyama, 7398521, Higashihiroshima, JAPAN
| | - Shinji Ohta
- Hiroshima University: Hiroshima Daigaku, Graduate School of Integrated Sciences for Life, 1-7-1 Kagamiyama, 7398521, Higashihiroshima, JAPAN
| |
Collapse
|
8
|
Rather PA, Herzog AE, Ernst DA, Westerman EL. Effect of experience on mating behaviour in male Heliconius melpomene butterflies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Yoda S, Sakakura K, Kitamura T, KonDo Y, Sato K, Ohnuki R, Someya I, Komata S, Kojima T, Yoshioka S, Fujiwara H. Genetic switch in UV response of mimicry-related pale-yellow colors in Batesian mimic butterfly, Papilio polytes. SCIENCE ADVANCES 2021; 7:7/2/eabd6475. [PMID: 33523992 PMCID: PMC7793577 DOI: 10.1126/sciadv.abd6475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/18/2020] [Indexed: 05/14/2023]
Abstract
In a Batesian mimic butterfly Papilio polytes, mimetic females resemble an unpalatable model, Pachliopta aristolochiae, but exhibit a different color pattern from nonmimetic females and males. In particular, the pale-yellow region on hind wings, which correspondingly sends important putative signals for mimicry and mate preference, is different in shape and chemical features between nonmimetic and mimetic morphs. Recently, we found that mimetic-type doublesex [dsx (H)] causes mimetic traits; however, the control of dimorphic pale-yellow colors remains unclear. Here, we revealed that dsx (H) switched the pale-yellow colors from UV-excited fluorescent type (nonmimetic) to UV-reflecting type (mimetic), by repressing the papiliochrome II synthesis genes and nanostructural changes in wing scales. Photoreceptor reactivities showed that some birds and butterflies could effectively recognize mimetic and nonmimetic pale-yellow colors, suggesting that a genetic switch in the UV response of pale-yellow colors may play essential roles in establishing the dimorphic female-limited Batesian mimicry.
Collapse
Affiliation(s)
- Shinichi Yoda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kousuke Sakakura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Tasuku Kitamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yûsuke KonDo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kazuki Sato
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Ryosuke Ohnuki
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Itsuki Someya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shinya Komata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Tetsuya Kojima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shinya Yoshioka
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
10
|
The male swallowtail butterfly, Papilio polytes, uses cuticular hydrocarbons for mate discrimination. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Katoh M, Tatsuta H, Tsuji K. Mimicry genes reduce pre-adult survival rate in Papilio polytes: A possible new mechanism for maintaining female-limited polymorphism in Batesian mimicry. J Evol Biol 2020; 33:1487-1494. [PMID: 32841468 DOI: 10.1111/jeb.13686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
Abstract
Batesian mimicry, in which harmless organisms resemble unpalatable or harmful species, is a well-studied adaptation for predation avoidance. The females of some Batesian mimic species comprise mimetic and nonmimetic individuals. Mimetic females of such polymorphic species clearly have a selective advantage due to decreased predation pressure, but the selective forces that maintain nonmimetic females in a population remain unclear. In the swallowtail butterfly, Papilio polytes, female polymorphism is controlled by the H (mimetic) and h (nonmimetic) alleles at a single autosomal locus. Here, we examined whether the dominant H allele has a deleterious effect on the pre-adult survival rate (egg-to-adult emergence rate). We repeated an assortative mating-like treatment-that is breeding of males and females whose mothers had the same phenotype (mimetic or nonmimetic)-for three consecutive generations, while avoiding inbreeding. Results showed that pre-adult survival rate decreased over generations only in lines derived from mothers with the mimetic phenotype (hereafter, mimetic-assorted lines). This lowered survival was due to an increased mortality at the final instar larval stage and the pupal stages. Interestingly, the pre-adult mortality in the mimetic-assorted lines seemed to be associated with a male-biased sex ratio at adult emergence. These results suggest that the dominant H allele displays a mildly deleterious effect that is expressed more strongly in females and homozygous individuals than in heterozygous individuals. We propose that this cost of mimicry in larval and pupal stages contributes to the maintenance of female-limited polymorphism in P. polytes.
Collapse
Affiliation(s)
- Mitsuho Katoh
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Haruki Tatsuta
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuki Tsuji
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
12
|
Westerman EL, Antonson N, Kreutzmann S, Peterson A, Pineda S, Kronforst MR, Olson-Manning CF. Behaviour before beauty: signal weighting during mate selection in the butterfly Papilio polytes. Ethology 2019; 125:565-574. [PMID: 33688110 DOI: 10.1111/eth.12884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mating displays often contain multiple signals. Different combinations of these signals may be equally successful at attracting a mate, as environment and signal combination may influence relative signal weighting by choosy individuals. This variation in signal weighting among choosy individuals may facilitate the maintenance of polymorphic displays and signalling behaviour. One group of animals known for their polymorphic patterning are Batesian mimetic butterflies, where the interaction of sexual selection and predation pressures are hypothesized to influence the maintenance of polymorphic wing patterning and behaviour. Males in the female-limited polymorphic Batesian mimetic butterfly Papilio polytes use female wing pattern and female activity levels when determining whom to court. They court stationary females with mimetic wing patterns more often than stationary females with non-mimetic, male-like wing patterns, and active females more often than inactive females. It is unclear whether females modify their behaviour to increase (or decrease) their likelihood of receiving male courtship, or whether non-mimetic females spend more time in cryptic environments than mimetic females, to compensate for their lack of mimicry-driven predation protection (at the cost of decreased visibility to males). In addition, relative signal weighting of female wing pattern and activity to male mate selection is unknown. To address these questions, we conducted a series of observational studies of a polymorphic P. polytes population in a large butterfly enclosure. We found that males exclusively courted active females, irrespective of female wing pattern. However, males did court active non-mimetic females significantly more often than expected given their relative abundance in the population. Females exhibited similar activity levels, and selected similar resting environments, irrespective of wing pattern. Our results suggest that male preference for non-mimetic females may play an active role in the maintenance of the non-mimetic female form in natural populations, where males are likely to be in the presence of active, as well as inactive, mimetic and non-mimetic females.
Collapse
|
13
|
Zhang W, Westerman E, Nitzany E, Palmer S, Kronforst MR. Tracing the origin and evolution of supergene mimicry in butterflies. Nat Commun 2017; 8:1269. [PMID: 29116078 PMCID: PMC5677128 DOI: 10.1038/s41467-017-01370-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
Supergene mimicry is a striking phenomenon but we know little about the evolution of this trait in any species. Here, by studying genomes of butterflies from a recent radiation in which supergene mimicry has been isolated to the gene doublesex, we show that sexually dimorphic mimicry and female-limited polymorphism are evolutionarily related as a result of ancient balancing selection combined with independent origins of similar morphs in different lineages and secondary loss of polymorphism in other lineages. Evolutionary loss of polymorphism appears to have resulted from an interaction between natural selection and genetic drift. Furthermore, molecular evolution of the supergene is dominated not by adaptive protein evolution or balancing selection, but by extensive hitchhiking of linked variants on the mimetic dsx haplotype that occurred at the origin of mimicry. Our results suggest that chance events have played important and possibly opposing roles throughout the history of this classic example of adaptation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Erica Westerman
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eyal Nitzany
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| | - Stephanie Palmer
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|