Nakajima S. Food avoidance learning based on entirely voluntary wheel running in laboratory mice (Mus musculus).
Behav Processes 2021;
192:104484. [PMID:
34428526 DOI:
10.1016/j.beproc.2021.104484]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 11/15/2022]
Abstract
Previous studies (Nakajima, 2019a,b) demonstrated food avoidance learning based on wheel running in laboratory mice: Consumption of a target snack becomes suppressed if it is repeatedly paired with an opportunity to run in an activity wheel. This is a kind of Pavlovian conditioning, because the avoidance is specific to the paired snack. For example, in an experiment, mice were initially trained to run in closed wheels. Then, access to one of the two kinds of snacks (cheese or raisins, counterbalanced) was followed by confinement in a large pet cage with an open wheel, while access to the other snack was not. After several repetitions of these two types of trials, differentiation in consumption between the two snacks emerged: The intake of the unpaired snack increased gradually over days, while the increase was attenuated for the running-paired snack. The present study replicated this food avoidance learning without the pretraining of running in a closed wheel, emphasizing the intrinsic capacity of running to establish food avoidance. The results somewhat suggest that pretraining in open wheels facilitates running-based food avoidance, but this effect was too weak in the present study to draw a clear conclusion.
Collapse