1
|
Goolsby BC, Smith EJ, Muratore IB, Coto ZN, Muscedere ML, Traniello JFA. Differential Neuroanatomical, Neurochemical, and Behavioral Impacts of Early-Age Isolation in a Eusocial Insect. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:171-183. [PMID: 38857586 DOI: 10.1159/000539546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Social experience early in life appears to be necessary for the development of species-typical behavior. Although isolation during critical periods of maturation has been shown to impact behavior by altering gene expression and brain development in invertebrates and vertebrates, workers of some ant species appear resilient to social deprivation and other neurobiological challenges that occur during senescence or due to loss of sensory input. It is unclear if and to what degree neuroanatomy, neurochemistry, and behavior will show deficiencies if social experience in the early adult life of worker ants is compromised. METHODS We reared newly eclosed adult workers of Camponotus floridanus under conditions of social isolation for 2-53 days, quantified brain compartment volumes, recorded biogenic amine levels in individual brains, and evaluated movement and behavioral performance to compare the neuroanatomy, neurochemistry, brood-care behavior, and foraging (predatory behavior) of isolated workers with that of workers experiencing natural social contact after adult eclosion. RESULTS We found that the volume of the antennal lobe, which processes olfactory inputs, was significantly reduced in workers isolated for an average of 40 days, whereas the size of the mushroom bodies, centers of higher-order sensory processing, increased after eclosion and was not significantly different from controls. Titers of the neuromodulators serotonin, dopamine, and octopamine remained stable and were not significantly different in isolation treatments and controls. Brood care, predation, and overall movement were reduced in workers lacking social contact early in life. CONCLUSION These results suggest that the behavioral development of isolated workers of C. floridanus is specifically impacted by a reduction in the size of the antennal lobe. Task performance and locomotor ability therefore appear to be sensitive to a loss of social contact through a reduction of olfactory processing ability rather than change in the size of the mushroom bodies, which serve important functions in learning and memory, or the central complex, which controls movement.
Collapse
Affiliation(s)
- Billie C Goolsby
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Department of Biology, Stanford University, Stanford, California, USA
| | - E Jordan Smith
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Isabella B Muratore
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Chemistry Department, United States Naval Academy, Annapolis, Maryland, USA
| | - Zach N Coto
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Mario L Muscedere
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | |
Collapse
|
2
|
Goolsby BC, Smith EJ, Muratore IB, Coto ZN, Muscedere ML, Traniello JFA. Differential Neuroanatomical, Neurochemical, and Behavioral Impacts of Early-Age Isolation in a Eusocial Insect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.546928. [PMID: 37425857 PMCID: PMC10326991 DOI: 10.1101/2023.06.29.546928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Social experience early in life appears to be necessary for the development of species-typical behavior. Although isolation during critical periods of maturation has been shown to impact behavior by altering gene expression and brain development in invertebrates and vertebrates, workers of some ant species appear resilient to social deprivation and other neurobiological challenges that occur during senescence or due to loss of sensory input. It is unclear if and to what degree neuroanatomy, neurochemistry, and behavior will show deficiencies if social experience in the early adult life of worker ants is compromised. We reared newly-eclosed adult workers of Camponotus floridanus under conditions of social isolation for 2 to 53 days, quantified brain compartment volumes, recorded biogenic amine levels in individual brains, and evaluated movement and behavioral performance to compare the neuroanatomy, neurochemistry, brood-care behavior, and foraging (predatory behavior) of isolated workers with that of workers experiencing natural social contact after adult eclosion. We found that the volume of the antennal lobe, which processes olfactory inputs, was significantly reduced in workers isolated for an average of 40 days, whereas the size of the mushroom bodies, centers of higher-order sensory processing, increased after eclosion and was not significantly different from controls. Titers of the neuromodulators serotonin, dopamine, and octopamine remained stable and were not significantly different in isolation treatments and controls. Brood care, predation, and overall movement were reduced in workers lacking social contact early in life. These results suggest that the behavioral development of isolated workers of C. floridanus is specifically impacted by a reduction in the size of the antennal lobe. Task performance and locomotor ability therefore appear to be sensitive to a loss of social contact through a reduction of olfactory processing ability rather than change in the size of the mushroom bodies, which serve important functions in learning and memory, or the central complex, which controls movement.
Collapse
Affiliation(s)
- Billie C. Goolsby
- Department of Biology, Boston University, Boston, MA, 02215, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - E. Jordan Smith
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Isabella B. Muratore
- Department of Biology, Boston University, Boston, MA, 02215, USA
- Department of Biological Sciences, New Jersey Institute of Technology, NJ, 07102, USA
| | - Zach N. Coto
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | | | | |
Collapse
|
3
|
Koto A, Tamura M, Wong PS, Aburatani S, Privman E, Stoffel C, Crespi A, McKenzie SK, La Mendola C, Kay T, Keller L. Social isolation shortens lifespan through oxidative stress in ants. Nat Commun 2023; 14:5493. [PMID: 37758727 PMCID: PMC10533837 DOI: 10.1038/s41467-023-41140-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Social isolation negatively affects health, induces detrimental behaviors, and shortens lifespan in social species. Little is known about the mechanisms underpinning these effects because model species are typically short-lived and non-social. Using colonies of the carpenter ant Camponotus fellah, we show that social isolation induces hyperactivity, alters space-use, and reduces lifespan via changes in the expression of genes with key roles in oxidation-reduction and an associated accumulation of reactive oxygen species. These physiological effects are localized to the fat body and oenocytes, which perform liver-like functions in insects. We use pharmacological manipulations to demonstrate that the oxidation-reduction pathway causally underpins the detrimental effects of social isolation on behavior and lifespan. These findings have important implications for our understanding of how social isolation affects behavior and lifespan in general.
Collapse
Affiliation(s)
- Akiko Koto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan.
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan.
| | - Makoto Tamura
- NeuroDiscovery Lab, Mitsubishi Tanabe Pharma America, Cambridge, MA, 02139, USA
| | - Pui Shan Wong
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan
| | - Sachiyo Aburatani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan
| | - Eyal Privman
- University of Haifa, Institute of Evolution, Department of Evolutionary and Environmental Biology, Haifa, 3498838, Israel
| | - Céline Stoffel
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland
| | - Alessandro Crespi
- Biorobotics Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Sean Keane McKenzie
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland
| | - Christine La Mendola
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland
| | - Tomas Kay
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland
| | - Laurent Keller
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland.
- Social Evolution Unit, Cornuit 8, BP 855, Chesières, CH-1885, Switzerland.
| |
Collapse
|
4
|
Vora A, Nguyen AD, Spicer C, Li W. The impact of social isolation on health and behavior in Drosophila melanogaster and beyond. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many organisms, including humans, have evolved dynamic social behaviors to promote survival. Public health studies show that isolation from social groups is a major risk factor for adverse health outcomes in humans, but these studies lack mechanistic understanding. Animal models can provide insight into the molecular and neural mechanisms underlying how social isolation impacts health through investigations using genetic, genomic, molecular, and neuroscience methods. In this review, we discuss Drosophila melanogaster as a robust genetic model for studying the effects of social isolation and for developing a mechanistic understanding of the perception of social isolation and how it impacts health.
Collapse
Affiliation(s)
- Aabha Vora
- Laboratory of Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Andrew D. Nguyen
- Laboratory of Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Carmen Spicer
- Laboratory of Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Wanhe Li
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|