1
|
Yang C, Chen S, Wang J. Ontogenetic color change in the tail of blue-tailed skinks ( Plestodion elegans). Ecol Evol 2023; 13:e10152. [PMID: 37287854 PMCID: PMC10242887 DOI: 10.1002/ece3.10152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Ontogenetic color change in animals is an interesting evolution-related phenomenon that has been studied by evolutionary biologists for decades. However, obtaining quantitative and continuous color measurements throughout the life cycle of animals is a challenge. To understand the rhythm of change in tail color and sexual dichromatism, we used a spectrometer to measure the tail color of blue-tailed skink (Plestiodon elegans) from birth to sexual maturity. Lab color space was selected due to its simplicity, fastness, and accuracy and depends on the visual sense of the observer for measuring the tail color of skinks. A strong relationship was observed between color indexes (values of L*, a*, b*) and growth time of skink. The luminance of tail color decreased from juveniles to adults in both sexes. Moreover, we observed differences in color rhythms between the sexes, which may be influenced by different behavioral strategies used by them. This study provides continuous measurements of change in tail color in skinks from juveniles to adults and offers insights into their sex-based differences. While this study does not provide direct evidence to explain the potential factors that drive dichromatism between the sexes of lizards, our finding could serve as a reference for future studies exploring possible mechanisms of ontogenetic color change in reptiles.
Collapse
Affiliation(s)
- Chen Yang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research StationSouthwest Minzu UniversityChenghuChina
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Siheng Chen
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Jie Wang
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| |
Collapse
|
2
|
Silva DJA, Erickson MF, dos Santos Guidi R, Pessoa DMA. Thin-fingered fiddler crabs display a natural preference for UV light cues but show no sensory bias to other hypertrophied claw coloration. Behav Processes 2022; 200:104667. [DOI: 10.1016/j.beproc.2022.104667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/06/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022]
|
3
|
Chotard A, Ledamoisel J, Decamps T, Herrel A, Chaine AS, Llaurens V, Debat V. Evidence of attack deflection suggests adaptive evolution of wing tails in butterflies. Proc Biol Sci 2022; 289:20220562. [PMID: 35611535 PMCID: PMC9130794 DOI: 10.1098/rspb.2022.0562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
Predation is a powerful selective force shaping many behavioural and morphological traits in prey species. The deflection of predator attacks from vital parts of the prey usually involves the coordinated evolution of prey body shape and colour. Here, we test the deflection effect of hindwing (HW) tails in the swallowtail butterfly Iphiclides podalirius. In this species, HWs display long tails associated with a conspicuous colour pattern. By surveying the wings within a wild population of I. podalirius, we observed that wing damage was much more frequent on the tails. We then used a standardized behavioural assay employing dummy butterflies with real I. podalirius wings to study the location of attacks by great tits Parus major. Wing tails and conspicuous coloration of the HWs were struck more often than the rest of the body by birds. Finally, we characterized the mechanical properties of fresh wings and found that the tail vein was more fragile than the others, suggesting facilitated escape ability of butterflies attacked at this location. Our results clearly support the deflective effect of HW tails and suggest that predation is an important selective driver of the evolution of wing tails and colour pattern in butterflies.
Collapse
Affiliation(s)
- Ariane Chotard
- Institut de Systématique, Evolution, Biodiversité (ISYEB, UMR 7205), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, Paris, France
| | - Joséphine Ledamoisel
- Institut de Systématique, Evolution, Biodiversité (ISYEB, UMR 7205), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, Paris, France
| | - Thierry Decamps
- Unité Mixte de Recherche Mécanismes Adaptatifs et Evolution (MECADEV, UMR 7179), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Anthony Herrel
- Unité Mixte de Recherche Mécanismes Adaptatifs et Evolution (MECADEV, UMR 7179), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Alexis S. Chaine
- Station d'Ecologie Theorique et Experimentale du CNRS (SETE, UAR 2029), Moulis, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB, UMR 7205), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB, UMR 7205), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, Paris, France
| |
Collapse
|