1
|
Braverman G, Barbhaiya M, Nong M, Mandl LA. Flares of Systemic Autoimmune Rheumatic Disease Following Coronavirus Disease 2019 Vaccination: A Narrative Review. Rheum Dis Clin North Am 2025; 51:75-92. [PMID: 39550108 DOI: 10.1016/j.rdc.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
This narrative review summarizes current evidence on the risk of systemic autoimmune rheumatic disease (SARD) flare following coronavirus disease 2019 vaccination. The authors detail key studies in the literature employing diverse methodologies, including cross-sectional surveys, prospective and retrospective cohorts, case-crossover designs, self-controlled case series, and systematic reviews. Data are reassuring, suggesting that vaccination is unlikely to increase the risk of flares across a range of SARD. When postvaccination flares do occur, individuals with high disease activity and frequent flares at baseline may be at higher risk. Rheumatologists may consider discussing these findings with patients during collaborative conversations about risks and benefits of vaccination.
Collapse
Affiliation(s)
- Genna Braverman
- Division of Rheumatology, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Medha Barbhaiya
- Division of Rheumatology, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Minerva Nong
- Hospital for Special Surgery, 60 Haven Avenue, New York, NY 10032, USA
| | - Lisa A Mandl
- Division of Rheumatology, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen LL, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. Cell 2024; 187:7621-7636.e19. [PMID: 39672162 DOI: 10.1016/j.cell.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/21/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues and functions as a decoy receptor that potently inhibits interferon signaling, including in cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David M Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lily L Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cody J Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Liliana D Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sara L Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Edward B Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
3
|
Wang FQ, Dang X, Su H, Lei Y, She CH, Zhang C, Chen X, Yang X, Yang J, Feng H, Yang W. Association of hyperactivated transposon expression with exacerbated immune activation in systemic lupus erythematosus. Mob DNA 2024; 15:23. [PMID: 39427224 PMCID: PMC11490001 DOI: 10.1186/s13100-024-00335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is a complex autoimmune disorder, and transposable elements (TEs) have been hypothesized to play a significant role in its development. However, limited research has explored this connection. Our study aimed to examine the relationship between TE expression and SLE pathogenesis. METHODS We analyzed whole blood RNA-seq datasets from 198 SLE patients and 84 healthy controls. The REdiscoverTE pipeline was employed to quantify TE and other gene expressions, identifying differentially expressed TEs. A TE score was calculated to measure overall TE expression for each sample. Gene ontology and gene set enrichment analyses were conducted to explore the functional implications of TE upregulation. Independent datasets were utilized to replicate the results and investigate cell type-specific TE expression. RESULTS Our analysis identified two distinct patient groups: one with high TE expression and another with TE expression comparable to controls. Patients with high TE expression exhibited upregulation of pathways involving nucleic acid sensors, and TE expression was strongly correlated with interferon (IFN) signatures. Furthermore, these patients displayed deregulated cell composition, including increased neutrophils and decreased regulatory T cells. Neutrophils were suggested as the primary source of TE expression, contributing to IFN production. CONCLUSIONS Our findings suggest that TE expression may serve as a crucial mediator in maintaining the activation of interferon pathways, acting as an endogenous source of nucleic acid stimulators in SLE patients.
Collapse
Affiliation(s)
- Frank Qingyun Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao Dang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Huidong Su
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Yao Lei
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Chun Hing She
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Caicai Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xinxin Chen
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xingtian Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Jing Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Feng
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Sowa MA, Sun H, Wang TT, Virginio VW, Schlamp F, El Bannoudi H, Cornwell M, Bash H, Izmirly PM, Belmont HM, Ruggles KV, Buyon JP, Voora D, Barrett TJ, Berger JS. Inhibiting the P2Y 12 Receptor in Megakaryocytes and Platelets Suppresses Interferon-Associated Responses. JACC Basic Transl Sci 2024; 9:1126-1140. [PMID: 39444926 PMCID: PMC11494392 DOI: 10.1016/j.jacbts.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 10/25/2024]
Abstract
The authors investigated the impact of antiplatelet therapy on the megakaryocyte (MK) and platelet transcriptome. RNA-sequencing was performed on MKs treated with aspirin or P2Y12 inhibitor, platelets from healthy volunteers receiving aspirin or P2Y12 inhibition, and platelets from patients with systemic lupus erythematosus (SLE). P2Y12 inhibition reduced gene expression and inflammatory pathways in MKs and platelets. In SLE, the interferon (IFN) pathway was elevated. In vitro experiments demonstrated the role of P2Y12 inhibition in reducing IFNα-induced platelet-leukocyte interactions and IFN signaling pathways. These results suggest that P2Y12 inhibition may have therapeutic potential for proinflammatory and autoimmune conditions like SLE.
Collapse
Affiliation(s)
- Marcin A. Sowa
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Haoyu Sun
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Tricia T. Wang
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Vitor W. Virginio
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Florencia Schlamp
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Hanane El Bannoudi
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA
| | - Hannah Bash
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Peter M. Izmirly
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - H. Michael Belmont
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Kelly V. Ruggles
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA
| | - Jill P. Buyon
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Deepak Voora
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, New York, New York, USA
- Department of Surgery, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Senaldi G, Mohan A, Zhang L, Tanaka J, Lin Y, Pandya G, Grossman S, Urbina S, Reynolds SH, Hand AH. First-in-Human Study of the Safety, Tolerability, Pharmacokinetics, Immunogenicity, and Pharmacodynamics of DS-7011a, an Anti-TLR7 Antagonistic Monoclonal Antibody for the Treatment of Systemic Lupus Erythematosus. J Clin Pharmacol 2024. [PMID: 39169827 DOI: 10.1002/jcph.6117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Toll-like receptor (TLR)7 is a pattern recognition receptor that critically contributes to the pathogenesis of systemic lupus erythematosus (SLE). DS-7011a is an anti-TLR7 monoclonal antibody that prevents TLR7 from signaling. The aim of this first-in-human, double-blind, randomized, and placebo-controlled study was to evaluate the safety, pharmacokinetics, immunogenicity, and pharmacodynamics of single ascending intravenous (IV) and subcutaneous (SC) doses of DS-7011a in healthy subjects (HS) (NCT05203692). On day 1, 80 HS received DS-7011a or placebo 6:2 in 10 cohorts (7 treated IV and 3 SC) of 8 each and were followed for 8 weeks until day 57. Safety was evaluated by recording treatment-emergent adverse events (TEAEs), pharmacokinetics by measuring plasma DS-7011a, immunogenicity by measuring plasma anti-drug antibodies (ADAs), and pharmacodynamics by evaluating the suppression of interleukin-6 production ex vivo in whole blood. DS-7011a was safe and well tolerated across all cohorts. TEAEs were mostly mild in severity and not drug-related. DS-7011a exposure increased with the dose but was not dose proportional, as the elimination of lower doses was accelerated by target-mediated drug disposition. Terminal half-life was about 15-17 days and Tmax upon SC administration was about 5 days. DS-7011a induced ADAs in about half of HS but with no impact on clinical findings and pharmacokinetics. Pharmacodynamic (PD) response also increased with the dose and at the higher doses was of large extent (>90%), early onset, and lasting duration. DS-7011a showed favorable safety, pharmacokinetics, immunogenicity, and PD properties that support its development for the treatment of SLE.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Daiichi Sankyo, Basking Ridge, NJ, USA
| | | | - Yong Lin
- Daiichi Sankyo, Basking Ridge, NJ, USA
| | | | | | | | | | - Alan H Hand
- Worldwide Clinical Trials, San Antonio, TX, USA
| |
Collapse
|
6
|
Liu M, Wang S, Liang Y, Fan Y, Wang W. Genetic polymorphisms in genes involved in the type I interferon system (STAT4 and IRF5): association with Asian SLE patients. Clin Rheumatol 2024; 43:2403-2416. [PMID: 38963465 DOI: 10.1007/s10067-024-07046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease with a polymorphic clinical presentation involving multisystem damages with significant differences in prevalence and disease severity among different ethnic groups. Although genetic, hormonal, and environmental factors have been demonstrated to contribute a lot to SLE, the pathogenesis of SLE is still unknown. Numerous evidence revealed that gene variants within the type I interferons (IFN) signaling pathway performed the great genetic associations with autoimmune diseases including SLE. To date, through genome-wide association studies (GWAS), genetic association studies showed that more than 100 susceptibility genes have been linked to the pathogenesis of SLE, among which TYK2, STAT1, STAT4, and IRF5 are important molecules directly connected to the type I interferon signaling system. The review summarized the genetic associations and the detailed risk loci of STAT4 and IRF5 with Asian SLE patients, explored the genotype distributions associated with the main clinical manifestations of SLE, and sorted out the potential reasons for the differences in susceptibility in Asia and Europe. Moreover, the therapies targeting STAT4 and IRF5 were also evaluated in order to propose more personalized and targeted treatment plans in SLE.
Collapse
Affiliation(s)
- Mengyao Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shenglong Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yujiao Liang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongsheng Fan
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
7
|
Giordano L, Cacciola R, Barone P, Vecchio V, Nasso ME, Alvaro ME, Gangemi S, Cacciola E, Allegra A. Autoimmune Diseases and Plasma Cells Dyscrasias: Pathogenetic, Molecular and Prognostic Correlations. Diagnostics (Basel) 2024; 14:1135. [PMID: 38893662 PMCID: PMC11171610 DOI: 10.3390/diagnostics14111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Multiple myeloma and monoclonal gammopathy of undetermined significance are plasma cell dyscrasias characterized by monoclonal proliferation of pathological plasma cells with uncontrolled production of immunoglobulins. Autoimmune pathologies are conditions in which T and B lymphocytes develop a tendency to activate towards self-antigens in the absence of exogenous triggers. The aim of our review is to show the possible correlations between the two pathological aspects. Molecular studies have shown how different cytokines that either cause inflammation or control the immune system play a part in the growth of immunotolerance conditions that make it easier for the development of neoplastic malignancies. Uncontrolled immune activation resulting in chronic inflammation is also known to be at the basis of the evolution toward neoplastic pathologies, as well as multiple myeloma. Another point is the impact that myeloma-specific therapies have on the course of concomitant autoimmune diseases. Indeed, cases have been observed of patients suffering from multiple myeloma treated with daratumumab and bortezomib who also benefited from their autoimmune condition or patients under treatment with immunomodulators in which there has been an arising or worsening of autoimmunity conditions. The role of bone marrow transplantation in the course of concomitant autoimmune diseases remains under analysis.
Collapse
Affiliation(s)
- Laura Giordano
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (L.G.); (P.B.); (V.V.); (M.E.N.); (M.E.A.)
| | - Rossella Cacciola
- Hemostasis/Hematology Unit, Department of Experimental and Clinical Medicine, University of Catania, 95123 Catania, Italy;
| | - Paola Barone
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (L.G.); (P.B.); (V.V.); (M.E.N.); (M.E.A.)
| | - Veronica Vecchio
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (L.G.); (P.B.); (V.V.); (M.E.N.); (M.E.A.)
| | - Maria Elisa Nasso
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (L.G.); (P.B.); (V.V.); (M.E.N.); (M.E.A.)
| | - Maria Eugenia Alvaro
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (L.G.); (P.B.); (V.V.); (M.E.N.); (M.E.A.)
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Emma Cacciola
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (L.G.); (P.B.); (V.V.); (M.E.N.); (M.E.A.)
| |
Collapse
|
8
|
Braverman G, Barbhaiya M, Nong M, Bykerk VP, Hupert N, Lewis V C, Mandl LA. Association of COVID-19 Vaccinations With Flares of Systemic Rheumatic Disease: A Case-Crossover Study. Arthritis Care Res (Hoboken) 2024; 76:733-742. [PMID: 38163750 PMCID: PMC11039379 DOI: 10.1002/acr.25288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE We aimed to determine the association of COVID-19 vaccination with flares of systemic rheumatic disease (SRD). METHODS Adults with systemic rheumatic disease (SRD) in a single-center COVID-19 Rheumatology Registry were invited to enroll in a study of flares. COVID-19 vaccine information from March 5, 2021, to September 6, 2022, was obtained from chart review and self-report. Participants self-reported periods of SRD flare and periods without SRD flare. "Hazard periods" were defined as the time before a self-report of flare and "control periods" as the time before a self-report of no flare. The association between flare and COVID-19 vaccination was evaluated during hazard and control periods through univariate conditional logistic regression stratified by participant, using lookback windows of 2, 7, and 14 days. RESULTS A total of 434 participants (mean ± SD age 59 ± 13 years, 84.1% female, 81.8% White, 64.5% with inflammatory arthritis, and 27.0% with connective tissue diseases) contributed to both the hazard and control periods and were included in analysis. A total of 1,316 COVID-19 vaccinations were identified (58.5% Pfizer-BioNTech, 39.5% Moderna, and 1.4% Johnson & Johnson); 96.1% of participants received at least one dose and 93.1% at least two doses. There was no association between COVID-19 vaccination and flares in the subsequent 2, 7, or 14 days (odds ratio [OR] 1.46, 95% confidence interval [CI] 0.86-2.46; OR 1.09, 95% CI 0.76-1.55; and OR 0.85, 95% CI 0.64-1.13, respectively). Analyses stratified on sex, age, SRD subtype, and vaccine manufacturer similarly showed no association between vaccination and flare. CONCLUSION COVID-19 vaccination was not associated with flares in this cohort of participants with SRD. These data are reassuring and can inform shared decision-making on COVID-19 immunization.
Collapse
Affiliation(s)
- Genna Braverman
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Medha Barbhaiya
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | | | - Vivian P. Bykerk
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nathaniel Hupert
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Colby Lewis V
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Lisa A. Mandl
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Poli MC. Proteasome disorders and inborn errors of immunity. Immunol Rev 2024; 322:283-299. [PMID: 38071420 DOI: 10.1111/imr.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Inborn errors of immunity (IEI) or primary immune deficiencies (PIDD) are caused by variants in genes encoding for molecules that are relevant to the innate or adaptive immune response. To date, defects in more than 450 different genes have been identified as causes of IEI, causing a constellation of heterogeneous clinical manifestations ranging from increased susceptibility to infection, to autoimmunity or autoinflammation. IEI that are mainly characterized by autoinflammation are broadly classified according to the inflammatory pathway that they predominantly perturb. Among autoinflammatory IEI are those characterized by the transcriptional upregulation of type I interferon genes and are referred to as interferonopathies. Within the spectrum of interferonopathies, genetic defects that affect the proteasome have been described to cause autoinflammatory disease and represent a growing area of investigation. This review is focused on describing the clinical, genetic, and molecular aspects of IEI associated with mutations that affect the proteasome and how the study of these diseases has contributed to delineate therapeutic interventions.
Collapse
Affiliation(s)
- M Cecilia Poli
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Unit of Immunology and Rheumatology Hospital Roberto del Río, Santiago, Chile
| |
Collapse
|
10
|
Fan W, Wei B, Chen X, Zhang Y, Xiao P, Li K, Zhang YQ, Huang J, Leng L, Bucala R. Potential role of RhoA GTPase regulation in type interferon signaling in systemic lupus erythematosus. Arthritis Res Ther 2024; 26:31. [PMID: 38243295 PMCID: PMC10799493 DOI: 10.1186/s13075-024-03263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by abnormal activation of the type I interferon (IFN) pathway, which results in tissue inflammation and organ damage. We explored the role of the RhoA GTPase in the type I IFN activation pathway to provide a potential basis for targeting GTPase signaling for the treatment of SLE. METHODS Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) of SLE patients and healthy controls, and the mRNA expression levels of RhoA and IFN-stimulated genes were measured by SYBR Green quantitative reverse transcriptase-polymerase chain reaction. IFN-a-stimulated response element (ISRE)-luciferase reporter gene assays and Western blotting were conducted to assess the biologic function of RhoA. An enzyme-linked immunoassay (ELISA) measured C-X-C motif chemokine ligand 10 (CXCL10) protein expression. RESULTS Our studies demonstrate that the expression of RhoA in the PBMCs of SLE subjects was significantly higher than in healthy controls and positively correlated with type I IFN scores and type I IFN-stimulated gene (ISGs) expression levels. SiRNA-mediated knockdown of RhoA and the RhoA/ROCK inhibitor Y27632 reduced the activity of the type I IFN-induced ISRE, the signal transducer and activator of transcription 1 (STAT-1) phosphorylation, and the expression of CXCL10 and 2'-5'-oligoadenylate synthetase 1 (OAS1). Finally, we verified that Y27632 could significantly down-regulate the OAS1 and CXCL10 expression levels in the PBMCs of SLE patients. CONCLUSION Our study shows that RhoA positively regulates the activation of the type I IFN response pathway. Reducing the expression level of RhoA inhibits the abnormal activation of the type I IFN system, and the RhoA/ROCK inhibitor Y27632 decreases aberrant type I IFN signaling in SLE PBMCs, suggesting the possibility of targeting the RhoA GTPase for the treatment of SLE.
Collapse
Affiliation(s)
- Wei Fan
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China.
| | - Bo Wei
- Department of Rheumatology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xuyan Chen
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China
| | - Yi Zhang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China
| | - Pingping Xiao
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China
| | - Kaiyan Li
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China
| | - Yi Qin Zhang
- Department of Nephrology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China
| | - Jinmei Huang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Pandya R, Lim D, Kleitsch J, Werth VP. Overlap of dermatomyositis and cutaneous lupus erythematosus: A case series. JAAD Case Rep 2023; 42:95-101. [PMID: 38090664 PMCID: PMC10711114 DOI: 10.1016/j.jdcr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Affiliation(s)
- Rachita Pandya
- Division of Dermatology, Corporal Micheal J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Darosa Lim
- Division of Dermatology, Corporal Micheal J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julianne Kleitsch
- Division of Dermatology, Corporal Micheal J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Victoria P. Werth
- Division of Dermatology, Corporal Micheal J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Kalayci FNC, Ozen S. Possible Role of Dysbiosis of the Gut Microbiome in SLE. Curr Rheumatol Rep 2023; 25:247-258. [PMID: 37737528 DOI: 10.1007/s11926-023-01115-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE OF REVIEW The resident gut microbiota serves as a double-edged sword that aids the host in multiple ways to preserve a healthy equilibrium and serve as early companions and boosters for the gradual evolution of our immune defensive layers; nevertheless, the perturbation of the symbiotic resident intestinal communities has a profound impact on autoimmunity induction, particularly in systemic lupus erythematosus (SLE). Herein, we seek to critically evaluate the microbiome research in SLE with a focus on intestinal dysbiosis. RECENT FINDINGS SLE is a complex and heterogeneous disorder with self-attack due to loss of tolerance, and there is aberrant excessive immune system activation. There is mounting evidence suggesting that intestinal flora disturbances may accelerate the formation and progression of SLE, presumably through a variety of mechanisms, including intestinal barrier dysfunction and leaky gut, molecular mimicry, bystander activation, epitope spreading, gender bias, and biofilms. Gut microbiome plays a critical role in SLE pathogenesis, and additional studies are warranted to properly define the impact of gut microbiome in SLE, which can eventually lead to new and potentially safer management approaches for this debilitating disease.
Collapse
Affiliation(s)
| | - Seza Ozen
- Department of Paediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
13
|
Yadav S, Varma A, Muralidharan AO, Bhowmick S, Mondal S, Mallick AI. The immune-adjunctive potential of recombinant LAB vector expressing murine IFNλ3 (MuIFNλ3) against Type A Influenza Virus (IAV) infection. Gut Pathog 2023; 15:53. [PMID: 37904242 PMCID: PMC10617148 DOI: 10.1186/s13099-023-00578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The conventional means of controlling the recurring pandemics of Type A Influenza Virus (IAV) infections remain challenging primarily because of its high mutability and increasing drug resistance. As an alternative to control IAV infections, the prophylactic use of cytokines to drive immune activation of multiple antiviral host factors has been progressively recognized. Among them, Type III Interferons (IFNs) exhibit a pivotal role in inducing potent antiviral host responses by upregulating the expression of several antiviral genes, including the Interferon-Stimulated Genes (ISGs) that specifically target the virus replication machinery. To harness the immuno-adjunctive potential, we examined whether pre-treatment of IFNλ3, a Type III IFN, can activate antiviral host responses against IAV infections. METHODS In the present study, we bioengineered a food-grade lactic acid-producing bacteria (LAB), Lactococcus lactis (L. lactis), to express and secrete functional murine IFNλ3 (MuIFNλ3) protein in the extracellular milieu. To test the immune-protective potential of MuIFNλ3 secreted by recombinant L. lactis (rL. lactis), we used murine B16F10 cells as an in vitro model while mice (BALB/c) were used for in vivo studies. RESULTS Our study demonstrated that priming with MuIFNλ3 secreted by rL. lactis could upregulate the expression of several antiviral genes, including Interferon Regulatory Factors (IRFs) and ISGs, without exacerbated pulmonary or intestinal inflammatory responses. Moreover, we also showed that pre-treatment of B16F10 cells with MuIFNλ3 can confer marked immune protection against mice-adapted influenza virus, A/PR/8/1934 (H1N1) infection. CONCLUSION Since the primary target for IAV infections is the upper respiratory and gastrointestinal tract, immune activation without affecting the tissue homeostasis suggests the immune-adjunctive potential of IFNλ3 against IAV infections.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Aparna Varma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Aparna Odayil Muralidharan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Sucharita Bhowmick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
14
|
Han S, Ferrer J, Bittar M, Jones A. Alopecia secondary to severe discoid lupus responding to anifrolumab. Int J Womens Dermatol 2023; 9:e098. [PMID: 37497192 PMCID: PMC10368378 DOI: 10.1097/jw9.0000000000000098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/16/2023] [Indexed: 07/28/2023] Open
Affiliation(s)
- Shannon Han
- College of Medicine, Department of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - James Ferrer
- Kaplan-Amonette Department of Dermatology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mohamad Bittar
- Division of Rheumatology, Department of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Allison Jones
- Kaplan-Amonette Department of Dermatology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
15
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen L, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557241. [PMID: 37745311 PMCID: PMC10515820 DOI: 10.1101/2023.09.11.557241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells, and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues, and functions as a decoy receptor that potently inhibits interferon signaling including in cells infected with SARS-CoV-2. Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Lily Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Cody J. Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- The Ohio State University College of Veterinary Medicine, Columbus, OH, 43210
| | - Liliana D. Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Sara L. Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| |
Collapse
|
16
|
Costin C, Khojah A, Ochfeld E, Morgan G, Subramanian S, Klein-Gitelman M, Tan XD, Pachman LM. B Cell Lymphocytosis in Juvenile Dermatomyositis. Diagnostics (Basel) 2023; 13:2626. [PMID: 37627885 PMCID: PMC10453137 DOI: 10.3390/diagnostics13162626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we determined if B lymphocytosis may serve as a JDM biomarker for disease activity. Children with untreated JDM were divided into two groups based on age-adjusted B cell percentage (determined through flow cytometry): 90 JDM in the normal B cell group and 45 in the high B cell group. We compared through T-testing the age, sex, ethnicity, duration of untreated disease (DUD), disease activity scores for skin (sDAS), muscle (mDAS), total (tDAS), CMAS, and neopterin between these two groups. The patients in the high B cell group had a higher tDAS (p = 0.009), mDAS (p = 0.021), and neopterin (p = 0.0365). Secondary analyses included B cell values over time and BAFF levels in matched patients with JM (juvenile myositis) and concurrent interstitial lung disease (ILD); JM alone and healthy controls Patient B cell percentage and number was significantly higher after 3-6 months of therapy and then significantly lower on completion of therapy (p =< 0.0001). The JM groups had higher BAFF levels than controls 1304 vs. 692 ng/mL (p = 0.0124). This study supports B cell lymphocytosis as a JDM disease-activity biomarker and bolsters the basis for B cell-directed therapies in JDM.
Collapse
Affiliation(s)
- Christopher Costin
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Amer Khojah
- Department of Pediatrics, College of Medicine, Umm Al-Qura University, Makkah 24341-6660, Saudi Arabia
| | - Elisa Ochfeld
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gabrielle Morgan
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Saravanan Subramanian
- Department of Pediatrics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Marisa Klein-Gitelman
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Xiao-Di Tan
- Department of Pediatrics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lauren M. Pachman
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Jha D, Al-Taie Z, Krek A, Eshghi ST, Fantou A, Laurent T, Tankelevich M, Cao X, Meringer H, Livanos AE, Tokuyama M, Cossarini F, Bourreille A, Josien R, Hou R, Canales-Herrerias P, Ungaro RC, Kayal M, Marion J, Polydorides AD, Ko HM, D’souza D, Merand R, Kim-Schulze S, Hackney JA, Nguyen A, McBride JM, Yuan GC, Colombel JF, Martin JC, Argmann C, Suárez-Fariñas M, Petralia F, Mehandru S. Myeloid cell influx into the colonic epithelium is associated with disease severity and non-response to anti-Tumor Necrosis Factor Therapy in patients with Ulcerative Colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.542863. [PMID: 37333091 PMCID: PMC10274630 DOI: 10.1101/2023.06.02.542863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Ulcerative colitis (UC) is an idiopathic chronic inflammatory disease of the colon with sharply rising global prevalence. Dysfunctional epithelial compartment (EC) dynamics are implicated in UC pathogenesis although EC-specific studies are sparse. Applying orthogonal high-dimensional EC profiling to a Primary Cohort (PC; n=222), we detail major epithelial and immune cell perturbations in active UC. Prominently, reduced frequencies of mature BEST4+OTOP2+ absorptive and BEST2+WFDC2+ secretory epithelial enterocytes were associated with the replacement of homeostatic, resident TRDC+KLRD1+HOPX+ γδ+ T cells with RORA+CCL20+S100A4+ TH17 cells and the influx of inflammatory myeloid cells. The EC transcriptome (exemplified by S100A8, HIF1A, TREM1, CXCR1) correlated with clinical, endoscopic, and histological severity of UC in an independent validation cohort (n=649). Furthermore, therapeutic relevance of the observed cellular and transcriptomic changes was investigated in 3 additional published UC cohorts (n=23, 48 and 204 respectively) to reveal that non-response to anti-Tumor Necrosis Factor (anti-TNF) therapy was associated with EC related myeloid cell perturbations. Altogether, these data provide high resolution mapping of the EC to facilitate therapeutic decision-making and personalization of therapy in patients with UC.
Collapse
Affiliation(s)
- Divya Jha
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-Taie
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York City, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Shadi Toghi Eshghi
- Biomarker Discovery, OMNI, Genentech Inc. South SanFrancisco, CA, USA
- OMNI Biomarker Development, Genentech Inc. South SanFrancisco, CA, USA
| | - Aurelie Fantou
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Thomas Laurent
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Michael Tankelevich
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuan Cao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Hadar Meringer
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra E Livanos
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Cossarini
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arnaud Bourreille
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Regis Josien
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Ruixue Hou
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York City, NY, USA
| | - Pablo Canales-Herrerias
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan C. Ungaro
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maia Kayal
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Marion
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Huaibin M. Ko
- Department of Pathology and Cell Biology, Columbia University Medical Center-New York Presbyterian Hospital, New York, New York
| | - Darwin D’souza
- Human Immune Monitoring Core, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphael Merand
- Human Immune Monitoring Core, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Core, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason A. Hackney
- Biomarker Discovery, OMNI, Genentech Inc. South SanFrancisco, CA, USA
- OMNI Biomarker Development, Genentech Inc. South SanFrancisco, CA, USA
| | - Allen Nguyen
- Biomarker Discovery, OMNI, Genentech Inc. South SanFrancisco, CA, USA
- OMNI Biomarker Development, Genentech Inc. South SanFrancisco, CA, USA
| | - Jacqueline M. McBride
- Biomarker Discovery, OMNI, Genentech Inc. South SanFrancisco, CA, USA
- OMNI Biomarker Development, Genentech Inc. South SanFrancisco, CA, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Jean Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerome C. Martin
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Carmen Argmann
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York City, NY, USA
| | - Mayte Suárez-Fariñas
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York City, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Saurabh Mehandru
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Tang W, Tummala R, Almquist J, Hwang M, White WI, Boulton DW, MacDonald A. Clinical Pharmacokinetics, Pharmacodynamics, and Immunogenicity of Anifrolumab. Clin Pharmacokinet 2023; 62:655-671. [PMID: 37148484 PMCID: PMC10182164 DOI: 10.1007/s40262-023-01238-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 05/08/2023]
Abstract
The type I interferon (IFN) signaling pathway is implicated in the pathogenesis of systemic lupus erythematosus (SLE). Anifrolumab is a monoclonal antibody that targets the type I IFN receptor subunit 1. Anifrolumab is approved in several countries for patients with moderate to severe SLE receiving standard therapy. The approved dosing regimen of anifrolumab is a 300-mg dose administered intravenously every 4 weeks; this was initially based on the results of the Phase 2b MUSE and further confirmed in the Phase 3 TULIP-1 and TULIP-2 trials, in which anifrolumab 300-mg treatment was associated with clinically meaningful improvements in disease activity with an acceptable safety profile. There have been several published analyses of the pharmacokinetic and pharmacodynamic profile of anifrolumab, including a population-pharmacokinetic analysis of 5 clinical studies of healthy volunteers and patients with SLE, in which body weight and type I IFN gene expression were significant covariates identified for anifrolumab exposure and clearance. Additionally, the pooled Phase 3 SLE population has been used to evaluate how serum exposure may be related to clinical responses, safety risks, and pharmacodynamic effects of the 21-gene type I IFN gene signature (21-IFNGS). The relevance of 21-IFNGS with regard to clinical efficacy outcomes has also been analyzed. Herein, the clinical pharmacokinetics, pharmacodynamics, and immunogenicity of anifrolumab as well as results of population-pharmacokinetics and exposure-response analyses are reviewed.
Collapse
Affiliation(s)
- Weifeng Tang
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA.
| | - Raj Tummala
- Clinical Development, Late Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Joachim Almquist
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Hwang
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Wendy I White
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - David W Boulton
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Alexander MacDonald
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
19
|
Costa F, Beltrami E, Mellone S, Sacchetti S, Boggio E, Gigliotti CL, Stoppa I, Dianzani U, Rolla R, Giordano M. Genes and Microbiota Interaction in Monogenic Autoimmune Disorders. Biomedicines 2023; 11:1127. [PMID: 37189745 PMCID: PMC10135656 DOI: 10.3390/biomedicines11041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Monogenic autoimmune disorders represent an important tool to understand the mechanisms behind central and peripheral immune tolerance. Multiple factors, both genetic and environmental, are known to be involved in the alteration of the immune activation/immune tolerance homeostasis typical of these disorders, making it difficult to control the disease. The latest advances in genetic analysis have contributed to a better and more rapid diagnosis, although the management remains confined to the treatment of clinical manifestations, as there are limited studies on rare diseases. Recently, the correlation between microbiota composition and the onset of autoimmune disorders has been investigated, thus opening up new perspectives on the cure of monogenic autoimmune diseases. In this review, we will summarize the main genetic features of both organ-specific and systemic monogenic autoimmune diseases, reporting on the available literature data on microbiota alterations in these patients.
Collapse
Affiliation(s)
- Federica Costa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Eleonora Beltrami
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Simona Mellone
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Sara Sacchetti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Mara Giordano
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| |
Collapse
|
20
|
Cornwell MG, Bannoudi HE, Luttrell-Williams E, Engel A, Barrett TJ, Myndzar K, Izmirly P, Belmont HM, Clancy R, Ruggles KV, Buyon JP, Berger JS. Modeling of clinical phenotypes in systemic lupus erythematosus based on the platelet transcriptome and FCGR2a genotype. J Transl Med 2023; 21:247. [PMID: 37029410 PMCID: PMC10082503 DOI: 10.1186/s12967-023-04059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/12/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND The clinical heterogeneity of SLE with its complex pathogenesis remains challenging as we strive to provide optimal management. The contribution of platelets to endovascular homeostasis, inflammation and immune regulation highlights their potential importance in SLE. Prior work from our group showed that the Fcγ receptor type IIa (FcγRIIa)-R/H131 biallelic polymorphism is associated with increased platelet activity and cardiovascular risk in SLE. The study was initiated to investigate the platelet transcriptome in patients with SLE and evaluate its association across FcγRIIa genotypes and distinct clinical features. METHODS Fifty-one patients fulfilling established criteria for SLE (mean age = 41.1 ± 12.3, 100% female, 45% Hispanic, 24% black, 22% Asian, 51% white, mean SLEDAI = 4.4 ± 4.2 at baseline) were enrolled and compared with 18 demographically matched control samples. The FCGR2a receptor was genotyped for each sample, and RNA-seq was performed on isolated, leukocyte-depleted platelets. Transcriptomic data were used to create a modular landscape to explore the differences between SLE patients and controls and various clinical parameters in the context of FCGR2a genotypes. RESULTS There were 2290 differentially expressed genes enriched for pathways involved in interferon signaling, immune activation, and coagulation when comparing SLE samples vs controls. When analyzing patients with proteinuria, modules associated with oxidative phosphorylation and platelet activity were unexpectedly decreased. Furthermore, genes that were increased in SLE and in patients with proteinuria were enriched for immune effector processes, while genes increased in SLE but decreased in proteinuria were enriched for coagulation and cell adhesion. A low-binding FCG2Ra allele (R131) was associated with decreases in FCR activation, which further correlated with increases in platelet and immune activation pathways. Finally, we were able to create a transcriptomic signature of clinically active disease that performed significantly well in discerning SLE patients with active clinical disease form those with inactive clinical disease. CONCLUSIONS In aggregate, these data demonstrate the platelet transcriptome provides insight into lupus pathogenesis and disease activity, and shows potential use as means of assessing this complex disease using a liquid biopsy.
Collapse
Affiliation(s)
- MacIntosh G Cornwell
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Hanane El Bannoudi
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Elliot Luttrell-Williams
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexis Engel
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, NYU Grossman School of Medicine, Medical Science Building 593, 530 First Avenue, New York, NY, 10016, USA
| | - Tessa J Barrett
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, 530 First Avenue, Skirball 9R, New York, NY, 10016, USA
| | - Khrystyna Myndzar
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, NYU Grossman School of Medicine, Medical Science Building 593, 530 First Avenue, New York, NY, 10016, USA
| | - Peter Izmirly
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, NYU Grossman School of Medicine, Medical Science Building 593, 530 First Avenue, New York, NY, 10016, USA
| | - H Michael Belmont
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, NYU Grossman School of Medicine, Medical Science Building 593, 530 First Avenue, New York, NY, 10016, USA
| | - Robert Clancy
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, NYU Grossman School of Medicine, Medical Science Building 593, 530 First Avenue, New York, NY, 10016, USA
| | - Kelly V Ruggles
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jill P Buyon
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, NYU Grossman School of Medicine, Medical Science Building 593, 530 First Avenue, New York, NY, 10016, USA.
| | - Jeffrey S Berger
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, 530 First Avenue, Skirball 9R, New York, NY, 10016, USA.
| |
Collapse
|
21
|
Morand E, Pike M, Merrill JT, van Vollenhoven R, Werth VP, Hobar C, Delev N, Shah V, Sharkey B, Wegman T, Catlett I, Banerjee S, Singhal S. Deucravacitinib, a Tyrosine Kinase 2 Inhibitor, in Systemic Lupus Erythematosus: A Phase II, Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Rheumatol 2023; 75:242-252. [PMID: 36369798 PMCID: PMC10100399 DOI: 10.1002/art.42391] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To assess the efficacy and safety of deucravacitinib, an oral, selective, allosteric inhibitor of TYK2, in a phase II trial in adult patients with active systemic lupus erythematosus (SLE). METHODS Adults with active SLE were enrolled from 162 sites in 17 countries. Patients (n = 363) were randomized 1:1:1:1 to receive deucravacitinib 3 mg twice daily, 6 mg twice daily, 12 mg once daily, or placebo. The primary end point was SLE Responder Index 4 (SRI-4) response at week 32. Secondary outcomes assessed at week 48 included SRI-4, British Isles Lupus Assessment Group-based Composite Lupus Assessment (BICLA) response, Cutaneous Lupus Erythematosus Disease Area and Severity Index 50 (CLASI-50), Lupus Low Disease Activity State (LLDAS), and improvements in active (swollen plus tender), swollen, and tender joint counts. RESULTS At week 32, the percentage of patients achieving SRI-4 response was 34% with placebo compared to 58% with deucravacitinib 3 mg twice daily (odds ratio [OR] 2.8 [95% confidence interval (95% CI) 1.5, 5.1]; P < 0.001 versus placebo), 50% with 6 mg twice daily (OR 1.9 [95% CI 1.0, 3.4]; P = 0.02 versus placebo), and 45% with 12 mg once daily (OR 1.6 [95% CI 0.8, 2.9]; nominal P = 0.08 versus placebo). Response rates were higher with deucravacitinib treatment for BICLA, CLASI-50, LLDAS, and joint counts compared to placebo. Rates of adverse events were similar across groups, except higher rates of infections and cutaneous events, including rash and acne, with deucravacitinib treatment. Rates of serious adverse events were comparable, with no deaths, opportunistic infections, tuberculosis infections, major adverse cardiovascular events, or thrombotic events reported. CONCLUSION Deucravacitinib treatment elicited higher response rates for SRI-4 and other end points compared with placebo, with an acceptable safety profile, in adult patients with active SLE.
Collapse
Affiliation(s)
- Eric Morand
- Monash University and Department of RheumatologyMonash HealthVictoriaAustralia
| | | | | | | | - Victoria P. Werth
- University of Pennsylvania and the Michael J. Crescenz VA Medical CenterPhiladelphia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang S, Zhao M, Jia S. Macrophage: Key player in the pathogenesis of autoimmune diseases. Front Immunol 2023; 14:1080310. [PMID: 36865559 PMCID: PMC9974150 DOI: 10.3389/fimmu.2023.1080310] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
The macrophage is an essential part of the innate immune system and also serves as the bridge between innate immunity and adaptive immune response. As the initiator and executor of the adaptive immune response, macrophage plays an important role in various physiological processes such as immune tolerance, fibrosis, inflammatory response, angiogenesis and phagocytosis of apoptotic cells. Consequently, macrophage dysfunction is a vital cause of the occurrence and development of autoimmune diseases. In this review, we mainly discuss the functions of macrophages in autoimmune diseases, especially in systemic lupus erythematosus (SLE), rheumatic arthritis (RA), systemic sclerosis (SSc) and type 1 diabetes (T1D), providing references for the treatment and prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Shuang Yang
- Dapartment of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Dapartment of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
23
|
Almquist J, Kuruvilla D, Mai T, Tummala R, White WI, Tang W, Roskos L, Chia YL. Nonlinear Population Pharmacokinetics of Anifrolumab in Healthy Volunteers and Patients With Systemic Lupus Erythematosus. J Clin Pharmacol 2022; 62:1106-1120. [PMID: 35383948 PMCID: PMC9540432 DOI: 10.1002/jcph.2055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/27/2022] [Indexed: 12/03/2022]
Abstract
We characterized the population pharmacokinetics of anifrolumab, a type I interferon receptor-blocking antibody. Pharmacokinetic data were analyzed from the anifrolumab (intravenous [IV], every 4 weeks) arms from 5 clinical trials in patients with systemic lupus erythematosus (SLE) (n = 664) and healthy volunteers (n = 6). Population pharmacokinetic modeling was performed using a 2-compartment model with parallel linear and nonlinear elimination pathways. The impact of covariates (demographics, interferon gene signature [IFNGS, high/low], disease characteristics, renal/hepatic function, SLE medications, and antidrug antibodies) on pharmacokinetics was evaluated. Time-varying clearance (CL) was characterized using an empirical sigmoidal time-dependent function. Anifrolumab exposure increased more than dose-proportionally from 100 to 1000 mg IV every 4 weeks. Based on population pharmacokinetics modeling, the baseline median linear CL was 0.193 L/day in IFNGS-high patients and 0.153 L/day in IFNGS-low/healthy volunteers. After a year, median anifrolumab linear CL decreased by 8.4% from baseline. Body weight and IFNGS were significant pharmacokinetic covariates, whereas age, sex, race, disease activity, SLE medications, and presence of antidrug antibodies had no significant effect on anifrolumab pharmacokinetics. Anifrolumab at a concentration of 300 mg IV every 4 weeks was predicted to be below the lower limit of quantitation in 95% of patients ≈10 weeks after a single dose and ≈16 weeks after stopping dosing at steady state. To conclude, anifrolumab exhibited nonlinear pharmacokinetics and time-varying linear CL; doses ≥300 mg IV every 4 weeks provided sustained anifrolumab concentrations. This study provides further evidence to support the use of anifrolumab 300 mg IV every 4 weeks in patients with moderate to severe SLE.
Collapse
Affiliation(s)
- Joachim Almquist
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&DAstraZenecaGothenburgSweden
| | - Denison Kuruvilla
- BioPharmaceuticals R&DAstraZenecaSouth San FranciscoCaliforniaUSA
- Present address:
GenentechSouth San FranciscoCaliforniaUSA
| | - Tu Mai
- BioPharmaceuticals R&DAstraZenecaSouth San FranciscoCaliforniaUSA
- Present address:
GenentechSouth San FranciscoCaliforniaUSA
| | - Raj Tummala
- Clinical Development, Late Respiratory & Immunology, BioPharmaceuticals R&DAstraZenecaGaithersburgMarylandUSA
| | - Wendy I. White
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology & Safety Sciences, BioPharmaceuticals R&DAstraZenecaGaithersburgMarylandUSA
| | - Weifeng Tang
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology & Safety Sciences, R&DAstraZenecaGaithersburgMarylandUSA
| | - Lorin Roskos
- BioPharmaceuticals R&DAstraZenecaSouth San FranciscoCaliforniaUSA
- Present address:
ExelixisAlamedaCaliforniaUSA
| | - Yen Lin Chia
- BioPharmaceuticals R&DAstraZenecaSouth San FranciscoCaliforniaUSA
- Present address:
SeagenSouth San FranciscoCaliforniaUSA
| |
Collapse
|
24
|
Sprow G, Dan J, Merola JF, Werth VP. Emerging Therapies in Cutaneous Lupus Erythematosus. Front Med (Lausanne) 2022; 9:968323. [PMID: 35899214 PMCID: PMC9313535 DOI: 10.3389/fmed.2022.968323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune disease that can occur with or without underlying systemic lupus erythematosus (SLE) and often has a profoundly negative impact on patient quality of life. There is substantial need for new and more effective therapies to treat CLE. CLE has a multifactorial pathogenesis that involves several key immune cells and pathways, including abnormalities in innate (e.g., type 1 interferon pathways) and adaptive immune responses (e.g., B and T cell autoreactivity), presenting multiple opportunities for more targeted therapies that do not require immunosuppression. Here we review several emerging therapies and their efficacy in CLE. Anifrolumab and belimumab have both been approved for the treatment of SLE in recent years, and clinical trial evidence suggests some forms of CLE may improve with these agents. Therapies currently in development that are being evaluated with CLE-specific outcome measures include BIIB059 and VIB7734, which target plasmacytoid dendritic cells (pDCs), and iberdomide, a cereblon modulator. These novel therapies all have previously demonstrated clinical benefit in some forms of CLE. Other therapies which target molecules believed to play a role in CLE pathogenesis, such as Janus kinases (JAKs), spleen tyrosine kinase (SYK), interferon γ (IFNγ), IL-12, and IL-23, have been evaluated in lupus clinical trials with skin-specific outcomes but failed to meet their primary endpoints.
Collapse
Affiliation(s)
- Grant Sprow
- Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Dermatology, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
| | - Joshua Dan
- Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Dermatology, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
| | - Joseph F. Merola
- Department of Dermatology, Department of Medicine, Division of Rheumatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Victoria P. Werth
- Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Dermatology, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
| |
Collapse
|
25
|
Zervides KA, Jern A, Nystedt J, Gullstrand B, Nilsson PC, Sundgren PC, Bengtsson AA, Jönsen A. Serum S100A8/A9 concentrations are associated with neuropsychiatric involvement in systemic lupus erythematosus: a cross-sectional study. BMC Rheumatol 2022; 6:38. [PMID: 35804434 PMCID: PMC9270742 DOI: 10.1186/s41927-022-00268-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuropsychiatric (NP) involvement and fatigue are major problems in systemic lupus erythematosus (SLE). S100A8/A9 is a marker of inflammation and responds to therapy in SLE patients. S100A8/A9 has an immunopathogenic role in various neurological diseases. We investigated S100A8/A9 in relation to NP-involvement and fatigue in SLE. METHODS 72 consecutive SLE outpatients at a tertiary centre and 26 healthy controls were included in this cross-sectional study. NPSLE was determined by specialists in rheumatology and neurology and defined according to three attribution models: "ACR", "SLICC A" and "SLICC B". Cerebral MRI was assessed by a neuroradiologist and neurocognitive testing by a neuropsychologist. The individuals were assessed by scores of pain (VAS), fatigue (VAS and FSS), and depression (MADRS-S). Concentrations of S100A8/A9 in serum and cerebrospinal fluid were measured with ELISA. Statistical calculations were performed using non-parametric methods. RESULTS Serum concentrations of S100A8/A9 were higher in SLE patients compared with controls (medians 1230 ng/ml; 790 ng/ml, p = 0.023). The concentrations were higher in NPSLE patients compared with non-NPSLE patients when applying the SLICC A and ACR models, but not significant when applying the SLICC B model (medians 1400 ng/ml; 920 ng/ml, p = 0.011; 1560 ng/ml; 1090 ng/ml, p = 0.050; 1460 ng/ml; 1090 ng/ml, p = 0.083, respectively). No differences of CSF S100A8/A9 concentrations were observed between NPSLE and non-NPSLE patients. SLE patients with depression or cognitive dysfunction as an ACR NPSLE manifestation had higher serum S100A8/A9 concentrations than non-NPSLE patients (median 1460 ng/ml, p = 0.007 and 1380 ng/ml, p = 0.013, respectively). Higher serum S100A8/A9 correlated with higher VAS fatigue (r = 0.31; p = 0.008) and VAS pain (r = 0.27, p = 0.021) in SLE patients. Serum S100A8/A9 was not independently associated with NPSLE when adjusting for scores of fatigue (FSS) and pain (VAS) (OR 1.86, 95% CI 0.93-3.73, p = 0.08). CONCLUSIONS Serum S100A8/A9 concentrations may be associated with NPSLE and fatigue. S100A8/A9 may be of interest in evaluating NPSLE, although further investigations are needed.
Collapse
Affiliation(s)
- Kristoffer A Zervides
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden.
- Department of Clinical Sciences, Neurology, Lund University, Skåne University Hospital, Lund, Sweden.
| | - Andreas Jern
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Jessika Nystedt
- Department of Clinical Sciences, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Birgitta Gullstrand
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Petra C Nilsson
- Department of Clinical Sciences, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Pia C Sundgren
- Department of Clinical Sciences, Diagnostic Radiology, Lund University, Skåne University Hospital, Lund, Sweden
- Lund University BioImaging Center, Lund University, Lund, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
26
|
Sprow G, Afarideh M, Dan J, Feng R, Keyes E, Grinnell M, Concha J, Werth VP. Autoimmune Skin Disease Exacerbations Following COVID-19 Vaccination. Front Immunol 2022; 13:899526. [PMID: 35693768 PMCID: PMC9186119 DOI: 10.3389/fimmu.2022.899526] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background Vaccination against COVID-19 reduces the risk of severe COVID-19 disease and death. However, few studies have examined the safety of the COVID-19 vaccine in patients with autoimmune skin disease. Objectives We sought to determine the incidence of disease exacerbation in this population following COVID-19 vaccination as well as the associated factors. Methods We performed a chart review of all patients seen in the autoimmune skin disease clinic of the principal investigator during the study period. All patients included for analysis were systematically and prospectively asked about COVID-19 vaccination status, manufacturers, vaccine dates, autoimmune symptoms after the vaccine, and timing of symptom onset using a standardized template as part of their visit. Demographics and autoimmune disease diagnosis were also collected. Analysis used Chi-square and Fisher's exact tests. Results 402 subjects were included for analysis. 85.6% of patients were fully vaccinated, with 12.9% unvaccinated and 1.5% partially vaccinated. 14.8% of fully vaccinated patients reported worsening autoimmune signs and symptoms after the vaccine. Fully vaccinated dermatomyositis patients were more likely to report worsening autoimmune signs and symptoms after the vaccine (22.7%) than fully vaccinated lupus erythematosus patients (8.6%) (p=0.009). Patients fully vaccinated with the Moderna vaccine trended towards an increased likelihood of reporting worsening autoimmune signs and symptoms after the vaccine (19.1%) than those with the Pfizer-BioNTech vaccine (12.0%) (p=0.076). Of the patients who had autoimmune symptoms after vaccination, 20% had symptoms after the 1st dose, 82% after the 2nd dose, and 4% after the 3rd dose with median onset (95% confidence interval) of 7 (2,14), 14 (14,21), and 18 (7,28) days later, respectively. Conclusions More fully vaccinated dermatomyositis patients had exacerbation of autoimmune signs and symptoms after the vaccine than fully vaccinated lupus erythematosus patients. However, given the risks of COVID-19, clinicians should still promote vaccination in most patients with autoimmune skin disease.
Collapse
Affiliation(s)
- Grant Sprow
- Dermatology, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, PA, United States
- Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mohsen Afarideh
- Dermatology, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, PA, United States
- Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joshua Dan
- Dermatology, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, PA, United States
- Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily Keyes
- Dermatology, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, PA, United States
- Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Madison Grinnell
- Dermatology, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, PA, United States
- Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Josef Concha
- Dermatology, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, PA, United States
- Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Victoria P. Werth
- Dermatology, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, PA, United States
- Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
27
|
Dörner T, van Vollenhoven RF, Doria A, Jia B, Ross Terres JA, Silk ME, de Bono S, Fischer P, Wallace DJ. Baricitinib decreases anti-dsDNA in patients with systemic lupus erythematosus: results from a phase II double-blind, randomized, placebo-controlled trial. Arthritis Res Ther 2022; 24:112. [PMID: 35578304 PMCID: PMC9109322 DOI: 10.1186/s13075-022-02794-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/26/2022] [Indexed: 01/20/2023] Open
Abstract
Background Patients with systemic lupus erythematosus (SLE) have substantial unmet medical need. Baricitinib is a Janus kinase (JAK)1 and 2 inhibitor that was shown to have therapeutic benefit in patients with SLE in a phase II clinical trial. The purpose of this study was to evaluate the median change from baseline in conventional serologic biomarkers in subgroups and the overall population of baricitinib-treated patients with SLE, and the SLE Responder Index-4 (SRI-4) response by normalization of anti-dsDNA. Methods Data were assessed from the phase II trial I4V-MC-JAHH (NCT02708095). The median change from baseline in anti-dsDNA, IgG, and other conventional serologic markers was evaluated over time in patients who had elevated levels of markers at baseline, and in all patients for IgG. Median change from baseline for baricitinib treatments were compared with placebo. Among patients who were anti-dsDNA positive at baseline, SRI-4 responder rate was compared for those who stayed positive or achieved normal levels by week 24. Results Significant decreases of anti-dsDNA antibodies were observed in response to baricitinib 2 mg and 4 mg compared to placebo beginning at weeks 2 (baricitinib 2 mg = − 14.3 IU/mL, placebo = 0.1 IU/mL) and 4 (baricitinib 4 mg = − 17.9 IU/mL, placebo = 0.02 IU/mL), respectively, continuing through week 24 (baricitinib 2 mg = − 29.6 IU/mL, baricitinib 4 mg = − 15.1 IU/mL, placebo=3.0 IU/mL). Significant reductions from baseline of IgG levels were found for baricitinib 4 mg-treated patients compared to placebo at weeks 12 (baricitinib 4 mg = − 0.65 g/L, placebo = 0.09 g/L) and 24 (baricitinib 4 mg = − 0.60 g/L, placebo = − 0.04 g/L). For patients who were anti-dsDNA positive at baseline, no relationship between achieving SRI-4 responder and normalization of anti-dsDNA was observed by week 24. Conclusions Baricitinib treatment resulted in a rapid and sustained significant decrease in anti-dsDNA antibodies compared to placebo among those with positive anti-dsDNA antibodies at baseline, as well as a significant decrease in IgG levels in the 4 mg group at weeks 12 and 24. These data suggest that baricitinib may influence B cell activity in SLE. Further studies are needed to evaluate if reductions in anti-dsDNA levels with baricitinib treatment reflect the impact of baricitinib on B cell activity. Trial registration NCT02708095. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02794-x.
Collapse
Affiliation(s)
- Thomas Dörner
- Department Medicine/Rheumatology and Clinical Immunology, Charite - Universitätsmedizin Berlin and Deutsches Rheuma-Forschungszentrum (DRFZ), Chariteplatz, 01 10117, Berlin, Germany.
| | | | | | - Bochao Jia
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | - Daniel J Wallace
- Cedars-Sinai Medical Center and University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
28
|
Mrak D, Bonelli M, Radner H. Neuropsychiatric Systemic Lupus Erythematosus: a remaining challenge. Curr Pharm Des 2022; 28:881-891. [PMID: 35549864 DOI: 10.2174/1381612828666220512102824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/13/2022] [Indexed: 11/22/2022]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease, which affects a wide range of organs with variable clinical features. Involvement of the nervous system is a challenging and multifaceted manifestation of the disease, presenting with a broad range of symptoms. Neuropsychiatric lupus (NPSLE) encompasses seven syndromes of the peripheral and 12 of the central nervous system, associated with a high disease burden. Despite advances in the management of SLE, NP manifestations still pose a challenge to clinicians. First, diagnosis and attribution to SLE is difficult due to the lack of specific biomarkers or imaging modalities. Second, therapeutic options are limited, and evidence is mainly based on case reports and expert consensus, as clinical trials are sparse. Moreover, no validated outcome measure on disease activity exists. Current recommendations for treatment include supportive as well as immunosuppressive medication, depending on the type and severity of manifestations. As NPSLE manifestations are increasingly recognized, a broader spectrum of therapeutic options can be expected.
Collapse
Affiliation(s)
- Daniel Mrak
- Medical University of Vienna, Vienna, Austria
| | - Michael Bonelli
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Helga Radner
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Mähönen K, Hau A, Bondet V, Duffy D, Eklund KK, Panelius J, Ranki A. Activation of NLRP3 Inflammasome in the Skin of Patients with Systemic and Cutaneous Lupus Erythematosus. Acta Derm Venereol 2022; 102:adv00708. [PMID: 35356994 DOI: 10.2340/actadv.v102.2293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NLRP3 inflammasome is suggested to contribute to the complex pathogenesis of systemic lupus erythematosus, but its role in cutaneous lupus erythematosus has not been addressed. This study investigated the expression of NLRP3 inflammasome components and levels of type I interferons in the skin of 20 patients with cutaneous lupus erythematosus. Expression of NLRP1/3, adaptor protein ASC (apoptosis-associated speck-like protein), caspase-1, interferon-α (IFN-α), myxovirus resistance protein (MxA), and interferon-induced proteins 1 and 2 (IFIT 1/2) in the skin was assessed using reverse transcription quantitative real-time PCR (RT-qPCR), western blotting and immunohistochemistry. Serum interferon-α protein levels from 12 patients were measured using digital enzyme-linked immunoassay (ELISA). Interleukin-1β expression was significantly upregulated in the lesional skin of patients with cutaneous lupus erythematosus compared with their uninvolved skin. However, NLRP1/3, ASC and caspase-1 were not significantly upregulated compared with the skin of control persons. IFN-α and IFN-induced proteins MxA and IFIT1/2 were strongly expressed in cutaneous lupus erythematosus skin. Variability in the expression of NLRP3 inflammasome components among patients suggests heterogeneity of pathological pathways in cutaneous lupus erythematosus.
Collapse
Affiliation(s)
- Katariina Mähönen
- Department of Dermatology and Allergology, Skin and Allergy Hospital, P.O. Box 160, FIN-00029 Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
30
|
Nomura A, Mizuno M, Noto D, Aoyama A, Kuga T, Murayama G, Chiba A, Miyake S. Different Spatial and Temporal Roles of Monocytes and Monocyte-Derived Cells in the Pathogenesis of an Imiquimod Induced Lupus Model. Front Immunol 2022; 13:764557. [PMID: 35371102 PMCID: PMC8964788 DOI: 10.3389/fimmu.2022.764557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/21/2022] [Indexed: 12/03/2022] Open
Abstract
Mounting evidence indicates the importance of aberrant Toll-like receptor 7 (TLR7) signaling in the pathogenesis of systemic lupus erythematosus (SLE). However, the mechanism of disease progression remains unclear. An imiquimod (IMQ)-induced lupus model was used to analyze the lupus mechanism related to the aberrant TLR7 signals. C57BL/6 mice and NZB/NZW mice were treated with topical IMQ, and peripheral blood, draining lymph nodes, and kidneys were analyzed focusing on monocytes and monocyte-related cells. Monocytes expressed intermediate to high levels of TLR7, and the long-term application of IMQ increased Ly6Clo monocytes in the peripheral blood and Ly6Clo monocyte-like cells in the lymph nodes and kidneys, whereas Ly6Chi monocyte-like cell numbers were increased in lymph nodes. Ly6Clo monocyte-like cells in the kidneys of IMQ-induced lupus mice were supplied by bone marrow-derived cells as demonstrated using a bone marrow chimera. Ly6Clo monocytes obtained from IMQ-induced lupus mice had upregulated adhesion molecule-related genes, and after adoptive transfer, they showed greater infiltration into the kidneys compared with controls. RNA-seq and post hoc PCR analyses revealed Ly6Clo monocyte-like cells in the kidneys of IMQ-induced lupus mice had upregulated macrophage-related genes compared with peripheral blood Ly6Clo monocytes and downregulated genes compared with kidney macrophages (MF). Ly6Clo monocyte-like cells in the kidneys upregulated Il6 and chemoattracting genes including Ccl5 and Cxcl13. The higher expression of Il6 in Ly6Clo monocyte-like cells compared with MF suggested these cells were more inflammatory than MF. However, MF in IMQ-induced lupus mice were characterized by their high expression of Cxcl13. Genes of proinflammatory cytokines in Ly6Chi and Ly6Clo monocytes were upregulated by stimulation with IMQ but only Ly6Chi monocytes upregulated IFN-α genes upon stimulation with 2′3′-cyclic-GMP-AMP, an agonist of stimulator of interferon genes. Ly6Chi and Ly6Clo monocytes in IMQ-induced lupus mice had different features. Ly6Chi monocytes responded in the lymph nodes of locally stimulated sites and had a higher expression of IFN-α upon stimulation, whereas Ly6Clo monocytes were induced slowly and tended to infiltrate into the kidneys. Infiltrated monocytes in the kidneys likely followed a trajectory through inflammatory monocyte-like cells to MF, which were then involved in the development of nephritis.
Collapse
Affiliation(s)
- Atsushi Nomura
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miho Mizuno
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Noto
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aki Aoyama
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taiga Kuga
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Goh Murayama
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Grainger R, Kim AHJ, Conway R, Yazdany J, Robinson PC. COVID-19 in people with rheumatic diseases: risks, outcomes, treatment considerations. Nat Rev Rheumatol 2022; 18:191-204. [PMID: 35217850 PMCID: PMC8874732 DOI: 10.1038/s41584-022-00755-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has brought challenges for people with rheumatic disease in addition to those faced by the general population, including concerns about higher risks of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and poor outcomes of COVID-19. The data that are now available suggest that rheumatic disease is associated with a small additional risk of SARS-CoV-2 infection, and that outcomes of COVID-19 are primarily influenced by comorbidities and particular disease states or treatments. Despite considerable advances in our knowledge of which therapeutic agents provide benefits in COVID-19, and of what constitutes effective vaccination strategies, the specific considerations that apply to people with rheumatic disease are yet to be definitively addressed. An overview of the most important COVID-19 studies to date that relate to people with rheumatic disease can contribute to our understanding of the clinical-care requirements of this population.
Collapse
Affiliation(s)
- Rebecca Grainger
- Department of Medicine, University of Otago, Wellington, New Zealand
| | - Alfred H J Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Richard Conway
- Department of Rheumatology, St James's Hospital, Dublin, Ireland
| | - Jinoos Yazdany
- Division of Rheumatology, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Philip C Robinson
- University of Queensland School of Clinical Medicine, Faculty of Medicine, Herston, Queensland, Australia.
- Royal Brisbane & Women's Hospital, Metro North Hospital & Health Service, Herston Road, Herston, Queensland, Australia.
| |
Collapse
|
32
|
Zheng X, Xiao J, Jiang Q, Zheng L, Liu C, Dong C, Zheng Y, Ni P, Zhang C, Zhang F, Zhong R, Ding H, Wang Q, Qiu Y, Gao M, Ding J, Shen N, Wei B, Wang H. AKT2 reduces IFNβ1 production to modulate antiviral responses and systemic lupus erythematosus. EMBO J 2022; 41:e108016. [PMID: 35191555 PMCID: PMC8922272 DOI: 10.15252/embj.2021108016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon regulatory factor 3 (IRF3)-induced type I interferon (I-IFN) production plays key roles in both antiviral and autoimmune responses. IRF3 phosphorylation, dimerization, and nuclear localization are needed for its activation and function, but the precise regulatory mechanisms remain to be explored. Here, we show that the serine/threonine kinase AKT2 interacts with IRF3 and phosphorylates it on Thr207, thereby attenuating IRF3 nuclear translocation in a 14-3-3ε-dependent manner and reducing I-IFN production. We further find that AKT2 expression is downregulated in viral-infected macrophages or in monocytes and tissue samples from systemic lupus erythematosus (SLE) patients and mouse models. Akt2-deficient mice exhibit increased I-IFN induction and reduced mortality in response to viral infection, but aggravated severity of SLE. Overexpression of AKT2 kinase-inactive or IRF3-T207A mutants in zebrafish supports that AKT2 negatively regulates I-IFN production and antiviral response in a kinase-dependent manner. This negative role of AKT2 in IRF3-induced I-IFN production suggests that AKT2 may be therapeutically targeted to differentially regulate antiviral infection and SLE.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qi Jiang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Lingming Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chang Liu
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Dong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuxiao Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Peili Ni
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Chi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Fang Zhang
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Ruiyue Zhong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Qiong Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Minxia Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianping Ding
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Bin Wei
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
33
|
Venkatadri R, Sabapathy V, Dogan M, Sharma R. Targeting Regulatory T Cells for Therapy of Lupus Nephritis. Front Pharmacol 2022; 12:806612. [PMID: 35069220 PMCID: PMC8775001 DOI: 10.3389/fphar.2021.806612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Lupus glomerulonephritis (LN) is a complex autoimmune disease characterized by circulating autoantibodies, immune-complex deposition, immune dysregulation and defects in regulatory T cell (Tregs). Treatment options rely on general immunosuppressants and steroids that have serious side effects. Approaches to target immune cells, such as B cells in particular, has had limited success and new approaches are being investigated. Defects in Tregs in the setting of autoimmunity is well known and Treg-replacement strategies are currently being explored. The aim of this minireview is to rekindle interest on Treg-targeting strategies. We discuss the existing evidences for Treg-enhancement strategies using key cytokines interleukin (IL)-2, IL-33 and IL-6 that have shown to provide remission in LN. We also discuss strategies for indirect Treg-modulation for protection from LN.
Collapse
Affiliation(s)
- Rajkumar Venkatadri
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Vikram Sabapathy
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Murat Dogan
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
34
|
Abstract
Rho guanosine triphosphatase (GTPases), as molecular switches, have been identified to be dysregulated and involved in the pathogenesis of various rheumatic diseases, mainly including rheumatoid arthritis, osteoarthritis, systemic sclerosis, and systemic lupus erythematosus. Downstream pathways involving multiple types of cells, such as fibroblasts, chondrocytes, synoviocytes, and immunocytes are mediated by activated Rho GTPases to promote pathogenesis. Targeted therapy via inhibitors of Rho GTPases has been implicated in the treatment of rheumatic diseases, demonstrating promising effects. In this review, the effects of Rho GTPases in the pathogenesis of rheumatic diseases are summarized, and the Rho GTPase-mediated pathways are elucidated. Therapeutic strategies using Rho GTPase inhibitors in rheumatic diseases are also discussed to provide insights for further exploration of targeted therapy in preclinical studies and clinical practice. Future directions on studies of Rho GTPases in rheumatic diseases based on current understandings are provided.
Collapse
Affiliation(s)
- Ruijie Zeng
- Department of Gastroenterology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
- Shantou University Medical College, Shantou 515041, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Corresponding author
| | - Hao Chen
- Department of Gastroenterology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Corresponding author
| |
Collapse
|
35
|
Ueha T, Kusuda M, Shibata S, Hirata M, Ozaki N. [Pharmacological actions of anifrolumab (Saphnelo ®) and clinical trial results as a treatment for systemic lupus erythematosus]. Nihon Yakurigaku Zasshi 2022; 157:271-279. [PMID: 35781459 DOI: 10.1254/fpj.22026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease which causes damaging inflammation in multiple organs via the accumulation of immune complexes. SLE pathogenesis is associated with type I interferons (IFNs), which are central and reflective of disease activity in SLE. Even before clinical development of disease, genetic and environmental contributions to IFN production lead to abnormal innate and adaptive immune activation. Through the Janus kinase-signal transducer and activator of transcription signaling pathway, IFN play a central role in the immunopathogenicity of SLE. Thus, IFN-blocking therapy may be used to regulate inflammation in individuals with SLE. Food and Drug Administration (FDA)-approved anifrolumab (Saphnelo®), which is a human IgG1κ monoclonal antibody that binds to subunit 1 of the type I interferon receptor with high specificity and affinity, was also approved for the treatment of adult patients with moderate to severe SLE who are receiving standard therapy by Pharmaceuticals and Medical Device Agency (PMDA), in Japan in September 2021; anifrolumab is administered as an intravenous infusion, 300 mg over a 30-minute period, every 4 weeks. In this article, we reviewed the actions of type I IFN and anifrolumab as a treatment for SLE.
Collapse
|
36
|
Adverse events and disease flares after SARS-CoV-2 vaccination in patients with systemic lupus erythematosus. Clin Rheumatol 2021; 41:1619-1622. [PMID: 34716843 PMCID: PMC8556788 DOI: 10.1007/s10067-021-05963-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 10/31/2022]
|
37
|
Grochowska J, Czerwinska J, Borowski LS, Szczesny RJ. Mitochondrial RNA, a new trigger of the innate immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1690. [PMID: 34498404 DOI: 10.1002/wrna.1690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria play a pivotal role in numerous cellular processes. One of them is regulation of the innate immune pathway. In this instance, mitochondria function in two different aspects of regulatory mechanisms. First, mitochondria are part of the antiviral signaling cascade that is triggered in the cytoplasm and transmitted to effector proteins through mitochondria-localized proteins. Second, mitochondria can become an endogenous source of innate immune stimuli. Under some pathophysiological conditions, mitochondria release to the cytoplasm immunogenic factors, such as mitochondrial nucleic acids. Here, we focus on immunogenic mitochondrial double-stranded RNA (mt-dsRNA) and its origin and metabolism. We discuss factors that are responsible for regulating mt-dsRNA and its escape from mitochondria, emphasizing the contribution of polynucleotide phosphorylase (PNPase, PNPT1). Finally, we review current knowledge of the role of PNPase in human health and disease. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Joanna Grochowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Jolanta Czerwinska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz S Borowski
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
38
|
Papadopoulos VE, Skarlis C, Evangelopoulos ME, Mavragani CP. Type I interferon detection in autoimmune diseases: challenges and clinical applications. Expert Rev Clin Immunol 2021; 17:883-903. [PMID: 34096436 DOI: 10.1080/1744666x.2021.1939686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Accumulating data highlights that the dysregulation of type I interferon (IFN) pathways plays a central role in the pathogenesis of several systemic and organ-specific autoimmune diseases. Advances in understanding the role of type I IFNs in these disorders can lead to targeted drug development as well as establishing potential disease biomarkers. AREAS COVERED Here, we summarize current knowledge regarding the role of type I IFNs in the major systemic, as well as organ-specific, autoimmune disorders, including prominent inflammatory CNS disorders like multiple sclerosis. EXPERT OPINION Type I IFN involvement and its clinical associations in a wide spectrum of autoimmune diseases represents a promising area for research aiming to unveil common pathogenetic pathways in systemic and organ-specific autoimmunity.
Collapse
Affiliation(s)
- Vassilis E Papadopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
39
|
Lu F, Wang R, Xia L, Nie T, Gao F, Yang S, Huang L, Shao K, Liu J, Yang Q. Regulation of IFN-Is by MEF2D Promotes Inflammatory Homeostasis in Microglia. J Inflamm Res 2021; 14:2851-2863. [PMID: 34234510 PMCID: PMC8254549 DOI: 10.2147/jir.s307624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background Microglia play an essential role in the central nervous system immune response. The transcription factor myocyte enhancer factor-2 D (MEF2D) is known to participate in stress regulation in various cell types and is easily activated in microglia. MEF2D has been shown to transcriptionally regulate several cytokine genes in immune cells and directly regulates the inflammatory response, suggesting that MEF2D may act as a key stimulus response regulator of microglia and is involved in the regulation of brain microhomeostasis. To uncover the molecular mechanism of MEF2D in the inflammatory system, in the present study, we investigated the global effect of MEF2D in activated microglia and explored its potential regulatory network. Methods Experiments with a recombinant lentiviral vector containing either shRNA or overexpressing MEF2D were performed in the murine microglial BV2 cell line. Transcriptome sequencing and global gene expression patterns were analysed in lipopolysaccharide-stimulated shMEF2D BV2 cells. Pro- and anti-inflammatory factors were assessed by Western blot, qPCR or ELISA, and microglial activity was assessed by phagocytosis and morphologic analysis. The direct binding of MEF2D to the promoter region of interferon regulatory factor 7 (IRF7) was tested by ChIP-qPCR. The interferon-stimulated genes (ISGs) were tested by qPCR. Results MEF2D actively participated in the inflammatory response of BV2 microglial cells. Stably expressed RNAi-induced silencing of MEF2D disrupted the microglial immune balance in two ways: (1) the expression of proinflammatory factors, such as NLRP3, IL-1β, and iNOS was promoted; and (2) the type-I interferon signalling pathway was markedly inhibited by directly modulating IRF7 transcription. In contrast, overexpression of MEF2D significantly reduced the expression of NLRP3 and iNOS under LPS stimulation and alleviated the level of immune stress in microglia. Conclusion These findings demonstrate that MEF2D plays an important role in regulating inflammatory homeostasis partly through transcriptional regulation of the type-I interferon signalling pathway.
Collapse
Affiliation(s)
- Fangfang Lu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China.,Department of Experimental Surgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Li Xia
- Department of Neurosurgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Fei Gao
- Department of Neurosurgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Shaosong Yang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Lu Huang
- Department of Neurosurgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Kaifeng Shao
- Department of Experimental Surgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| |
Collapse
|
40
|
Dörner T, Szelinski F, Lino AC, Lipsky PE. Therapeutic implications of the anergic/postactivated status of B cells in systemic lupus erythematosus. RMD Open 2021; 6:rmdopen-2020-001258. [PMID: 32675278 PMCID: PMC7425190 DOI: 10.1136/rmdopen-2020-001258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterised by numerous abnormalities in B lineage cells, including increased CD27++ plasmablasts/plasma cells, atypical CD27-IgD- B cells with increased CD95, spleen tyrosine kinase (Syk)++, CXCR5- and CXCR5+ subsets and anergic CD11c+Tbet+ age-associated B cells. Most findings, together with preclinical lupus models, support the concept of B cell hyperactivity in SLE. However, it remains largely unknown whether these specific B cell subsets have pathogenic consequences and whether they provide relevant therapeutic targets. Recent findings indicate a global distortion of B cell functional capability, in which the entire repertoire of naïve and memory B cells in SLE exhibits an anergic or postactivated (APA) functional phenotype. The APA status of SLE B cells has some similarities to the functional derangement of lupus T cells. APA B cells are characterised by reduced global cytokine production, diminished B cell receptor (BCR) signalling with decreased Syk and Bruton's tyrosine kinase phosphorylation related to repeated in vivo BCR stimulation as well as hyporesponsiveness to toll-like receptor 9 engagement, but intact CD40 signalling. This APA status was related to constitutive co-localisation of CD22 linked to phosphatase SHP-1 and increased overall protein phosphatase activities. Notably, CD40 co-stimulation could revert this APA status and restore BCR signalling, downregulate protein tyrosine phosphatase transcription and promote B cell proliferation and differentiation. The APA status and their potential rescue by bystander help conveyed through CD40 stimulation not only provides insights into possible mechanisms of escape of autoreactive clones from negative selection but also into novel ways to target B cells therapeutically.
Collapse
Affiliation(s)
| | | | - Andreia C Lino
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Peter E Lipsky
- RILITE Research Institute, Charlottesville, Virginia, USA
| |
Collapse
|
41
|
Liu L, Tang Z, Zeng Y, Liu Y, Zhou L, Yang S, Wang D. Role of necroptosis in infection-related, immune-mediated, and autoimmune skin diseases. J Dermatol 2021; 48:1129-1138. [PMID: 34109676 DOI: 10.1111/1346-8138.15929] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022]
Abstract
Regulated necrosis, also termed necroptosis, is another programmed cell death depending on a unique molecular pathway that does not overlap with apoptosis. Tumor necrosis factor and Toll-like receptor family members, interferon, and other mediators are the factors that mainly cause necroptosis. Activating necroptosis by ligands of death receptors requires the kinase activity of receptor-interacting proteins 1 and 3, and a mixed lineage kinase domain-like protein, which is a critical downstream mediator of necroptosis. Increasing evidence has revealed that necroptosis does not only involve physiological regulation but also the occurrence, development, and prognosis of certain diseases, such as septicemia, neurodegenerative diseases, and ischemic-reperfusion injury. Many excellent documented systematic discussions of necroptosis and its role in various skin diseases. In this review, we summarize the molecular mechanism of necroptosis, as well as the current knowledge on the contribution of necroptosis, in infection-related, immune-mediated, autoimmune skin diseases, and malignant skin tumors.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziting Tang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yilan Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuanhong Liu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shengbo Yang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
42
|
Petitdemange A, Blaess J, Sibilia J, Felten R, Arnaud L. Shared development of targeted therapies among autoimmune and inflammatory diseases: a systematic repurposing analysis. Ther Adv Musculoskelet Dis 2021; 12:1759720X20969261. [PMID: 33403021 PMCID: PMC7747103 DOI: 10.1177/1759720x20969261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Pathogenic inflammatory pathways are largely shared between different autoimmune and inflammatory diseases (AIDs). This offers the potential to develop a given targeted therapy in several AIDs. Methods: We analyzed two clinical trials registries (ClinicalTrials.gov and EU Clinical Trials Register) to identify the targeted therapies whose development is shared between at least two of the most common AIDs [rheumatoid arthritis (RA), spondyloarthritis (SpA), cutaneous psoriasis (cPso), inflammatory bowel diseases (IBD), systemic lupus erythematosus (SLE), primary Sjögren’s syndrome (pSS), systemic sclerosis (SSc), idiopathic inflammatory myopathies (IIM), giant cell arteritis (GCA), and multiple sclerosis (MS)] using an in-depth repurposing analysis. Results: We identified 142 shared targeted therapies. The four diseases in which shared targeted therapies were the most numerous were RA (n = 92), cPso (n = 67), IBD (n = 58), and SLE (n = 56). The two clusters of diseases between which the overlap of targeted therapies was the most important were RA and SLE as well as RA, SpA, cPso, and IBD. The targeted therapies which were shared by five diseases or more were abatacept, ustekinumab, rituximab, anakinra, etanercept, infliximab, secukinumab, tofacitinib, alemtuzumab, tocilizumab, adalimumab, apremilast, baricitinib, belimumab, brodalumab, filgotinib, and upadacitinib. The most frequently targeted molecules and pathways were (by descending frequency): JAK-STAT pathways, Th17 axis, TNF-α, IL-6, costimulation molecules, BAFF, CD20, BTK, chemokines and integrins, IL-1, and type I interferon. Conclusion: Many targeted therapies are developed in several AIDs, reflecting the overlap of pathogenic pathways and potential of drug repurposing. This suggests that a revision of the current, clinically based classification of AIDs towards a more mechanistic-based taxonomy might be relevant.
Collapse
Affiliation(s)
- Arthur Petitdemange
- Department of Rheumatology, National Reference Center for Auto-Immune Diseases (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Julien Blaess
- Department of Rheumatology, National Reference Center for Auto-Immune Diseases (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean Sibilia
- Department of Rheumatology, National Reference Center for Auto-Immune Diseases (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Renaud Felten
- Department of Rheumatology, National Reference Center for Auto-Immune Diseases (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurent Arnaud
- Service de rhumatologie, Centre National de Référence des Maladies Autoimmunes et Systémiques Rares, Hôpital de Hautepierre, 1 Avenue Molière BP 83049, Strasbourg Cedex, 67098, France
| |
Collapse
|
43
|
From incomplete to complete systemic lupus erythematosus; A review of the predictive serological immune markers. Semin Arthritis Rheum 2020; 51:43-48. [PMID: 33360229 DOI: 10.1016/j.semarthrit.2020.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/27/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex and heterogeneous autoimmune disease. A main challenge faced by clinicians is early identification of SLE, frequently resulting in diagnostic delay. Timely treatment, however, is important to limit disease progression, and prevent organ damage and mortality. Often, patients present with clinical symptoms and immunologic abnormalities suggestive of SLE, while not meeting classification criteria yet. This is referred to as incomplete SLE (iSLE). However, not all these patients will develop SLE. Therefore, there is need for predictive biomarkers that can distinguish patients at high risk of developing SLE, in order to allow early treatment. This article reviews the current literature on immunological changes in patients with stages preceding SLE, focusing on autoantibodies, type-I and -II interferons, and the complement system. We also provide an overview of possible predictive markers for progression to SLE that are applicable in daily clinical practice.
Collapse
|
44
|
Janus Kinase Inhibition and SLE: Is this a Plausible Treatment Option for SLE? CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2020. [DOI: 10.1007/s40674-020-00155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
IFN- γ Mediates the Development of Systemic Lupus Erythematosus. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7176515. [PMID: 33123584 PMCID: PMC7586164 DOI: 10.1155/2020/7176515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Objective Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can affect all organs in the body. It is characterized by overexpression of antibodies against autoantigen. Although previous bioinformatics analyses have identified several genetic factors underlying SLE, they did not discriminate between naive and individuals exposed to anti-SLE drugs. Here, we evaluated specific genes and pathways in active and recently diagnosed SLE population. Methods GSE46907 matrix downloaded from Gene Expression Omnibus (GEO) was analyzed using R, Metascape, STRING, and Cytoscape to identify differentially expressed genes (DEGs), enrichment pathways, protein-protein interaction (PPI), and hub genes between naive SLE individuals and healthy controls. Results A total of 134 DEGs were identified, in which 29 were downregulated, whereas 105 were upregulated in active and newly diagnosed SLE cases. GO term analysis revealed that transcriptional induction of the DEGs was particularly enhanced in response to secretion of interferon-γ and interferon-α and regulation of cytokine production innate immune responses among others. KEGG pathway analysis showed that the expression of DEGs was particularly enhanced in interferon signaling, IFN antiviral responses by activated genes, class I major histocompatibility complex (MHC-I) mediated antigen processing and presentation, and amyloid fiber formation. STAT1, IRF7, MX1, OASL, ISG15, IFIT3, IFIH1, IFIT1, OAS2, and GBP1 were the top 10 DEGs. Conclusions Our findings suggest that interferon-related gene expression and pathways are common features for SLE pathogenesis, and IFN-γ and IFN-γ-inducible GBP1 gene in naive SLE were emphasized. Together, the identified genes and cellular pathways have expanded our understanding on the mechanism underlying development of SLE. They have also opened a new frontier on potential biomarkers for diagnosis, biotherapy, and prognosis for SLE.
Collapse
|
46
|
Tanaka Y, Tummala R. Anifrolumab, a monoclonal antibody to the type I interferon receptor subunit 1, for the treatment of systemic lupus erythematosus: an overview from clinical trials. Mod Rheumatol 2020; 31:1-12. [PMID: 32814461 DOI: 10.1080/14397595.2020.1812201] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic activation of the type I interferon (IFN) pathway plays a critical role in systemic lupus erythematosus (SLE) pathogenesis. Anifrolumab is a human monoclonal antibody to the type I IFN receptor subunit 1, which blocks the action of type I IFNs. Two phase 3 studies (TULIP-1 and TULIP-2) and a phase 2b study (MUSE) provide substantial evidence for the efficacy and safety of anifrolumab for moderately to severely active SLE. In all three studies, monthly intravenous anifrolumab 300 mg was associated with treatment differences >16% compared with placebo at Week 52 in British Isles Lupus Assessment Group-based Composite Lupus Assessment response rates. The combined data across a range of other clinically significant endpoints (e.g. oral corticosteroid reduction, improved skin disease, flare reduction) further support the efficacy of anifrolumab for SLE treatment. The safety profile of anifrolumab was generally similar across all studies; serious adverse events occurred in 8-16% and 16-19% of patients receiving anifrolumab and placebo, respectively. Herpes zoster incidence was greater with anifrolumab (≤7%) vs placebo (≤2%). Evidence from these clinical trials suggests that in patients with active SLE, anifrolumab is superior to placebo in achieving composite endpoints of disease activity response and oral corticosteroid reduction.
Collapse
Affiliation(s)
- Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Raj Tummala
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
47
|
Henning S, Lambers WM, Doornbos-van der Meer B, Abdulahad WH, Kroese FGM, Bootsma H, Westra J, de Leeuw K. Proportions of B-cell subsets are altered in incomplete systemic lupus erythematosus and correlate with interferon score and IgG levels. Rheumatology (Oxford) 2020; 59:2616-2624. [PMID: 32259240 PMCID: PMC7449809 DOI: 10.1093/rheumatology/keaa114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/11/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Incomplete SLE (iSLE) patients display symptoms typical for SLE but have insufficient criteria to fulfil the diagnosis. Biomarkers are needed to identify iSLE patients that will progress to SLE. IFN type I activation, B-cell-activating factor (BAFF) and B-cell subset distortions play an important role in the pathogenesis of SLE. The aim of this cross-sectional study was to investigate whether B-cell subsets are altered in iSLE patients, and whether these alterations correlate with IFN scores and BAFF levels. METHODS iSLE patients (n = 34), SLE patients (n = 41) with quiescent disease (SLEDAI ≤4) and healthy controls (n = 22) were included. Proportions of B-cell subsets were measured with flow cytometry, IFN scores with RT-PCR and BAFF levels with ELISA. RESULTS Proportions of age-associated B-cells were elevated in iSLE patients compared with healthy controls and correlated with IgG levels. In iSLE patients, IFN scores and BAFF levels were significantly increased compared with healthy controls. Also, IFN scores correlated with proportions of switched memory B-cells, plasma cells and IgG levels, and correlated negatively with complement levels in iSLE patients. CONCLUSION In this cross-sectional study, distortions in B-cell subsets were observed in iSLE patients and were correlated with IFN scores and IgG levels. Since these factors play an important role in the pathogenesis of SLE, iSLE patients with these distortions, high IFN scores, and high levels of IgG and BAFF may be at risk for progression to SLE.
Collapse
Affiliation(s)
- Svenja Henning
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Wietske M Lambers
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
48
|
Mathian A, Amoura Z. Response to: 'Exacerbation of immune thrombocytopenia triggered by COVID-19 in patients with systemic lupus erythematosus' by Kondo et al. Ann Rheum Dis 2020; 80:e78. [PMID: 32759253 DOI: 10.1136/annrheumdis-2020-218176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Alexis Mathian
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Zahir Amoura
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
49
|
Hjorton K, Hagberg N, Pucholt P, Eloranta ML, Rönnblom L. The regulation and pharmacological modulation of immune complex induced type III IFN production by plasmacytoid dendritic cells. Arthritis Res Ther 2020; 22:130. [PMID: 32503683 PMCID: PMC7275601 DOI: 10.1186/s13075-020-02186-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Patients with systemic lupus erythematosus (SLE) have an ongoing interferon (IFN) production due to an activation of plasmacytoid dendritic cells (pDCs), which can be triggered to type I IFN synthesis by RNA containing immune complexes (RNA-IC). Considering emerging data suggesting a role of type III IFN in the SLE disease process, we asked if RNA-IC can induce type III IFN production in pDC and how this production can be regulated. METHODS Peripheral blood mononuclear cells (PBMCs) or immune cell subsets were isolated from healthy blood donors or SLE patients and stimulated with IC containing U1 snRNP and SLE-IgG (RNA-IC). Hydroxychloroquine (HCQ) and an interleukin receptor 1-associated kinase 4 inhibitor (IRAK4i) were added to cell cultures. Cytokine mRNA levels were determined with a microarray and protein levels with immunoassays. Single-cell RNA sequencing of pDCs using ddSEQ technology was performed. RESULTS Type III IFN mRNA and protein was induced in RNA-IC-stimulated pDC-NK and pDC-B cell co-cultures. A subset of activated pDCs (3%) expressed both type III and type I IFN mRNA. IFN-λ2, IFN-α2b, interleukin (IL)-3, IL-6, or granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced IFN-λ1/3 production 2-5-fold. HCQ and an IRAK4i blocked the RNA-IC-triggered IFN-λ1/3 production (p < 0.01). IFN-α2b and GM-CSF increased the proportion of SLE patients producing IFN-λ1/3 in response to RNA-IC from 11 to 33%. CONCLUSIONS Type III IFN production is triggered by RNA-IC in pDCs in a TLR-MyD88-dependent manner, enhanced by NK and B cells as well as several pro-inflammatory cytokines. These results support a contributing role for both type I and type III IFNs in SLE, which needs to be considered when targeting the IFN system in this disease.
Collapse
Affiliation(s)
- Karin Hjorton
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden.
| | - Niklas Hagberg
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden
| |
Collapse
|
50
|
Talotta R, Atzeni F, Laska MJ. The contribution of HERV-E clone 4-1 and other HERV-E members to the pathogenesis of rheumatic autoimmune diseases. APMIS 2020; 128:367-377. [PMID: 32202683 DOI: 10.1111/apm.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
Human endogenous retroviruses (HERV)-E consist of a family of more than 1300 elements, stably integrated in the human genome. Some of them are full-length proviruses able to synthesize the viral proteins gag, pol and env. The reactivation of HERV-E elements has been associated to placentation, cancer and autoimmunity. In this narrative review, we aimed to report the status of the art concerning the involvement of HERV-E in rheumatic autoimmune diseases. Following a research on PubMed database, a total of 87 articles were selected. The highest amount of evidence derives from studies on systemic lupus erythematosus (SLE), whereas a few to no data are available on other immune-mediated diseases. In SLE, the hyper-expression of HERV-E clone 4-1 in peripheral blood mononuclear cells or differentiated lymphocytes has been associated with disease activity and autoantibody production. It is likely that HERV-E take part to the pathogenesis of rheumatic autoimmune diseases but additional research is needed.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Messina, Azienda Ospedaliera "Gaetano Martino", Messina, Italy
| | - Fabiola Atzeni
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Messina, Azienda Ospedaliera "Gaetano Martino", Messina, Italy
| | | |
Collapse
|