1
|
Kwacz M, Sadło J, Walo M. New chamber stapes prosthesis: Effect of ionizing radiation on material and functional properties. NUKLEONIKA 2024; 69:205-214. [DOI: 10.2478/nuka-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
New chamber stapes prosthesis (ChSP) is a middle-ear prosthesis intended for use in ear surgery for restoring the patient's middle ear function. As the prosthesis is an implantable medical device, it must be sterilized before use. However, possible alterations in the material and the functional properties following the sterilization process can influence the safety aspects while using the prosthesis. The purpose of this paper was to determine the effects of ionizing radiation (IR) on the physicochemical and biological properties of the new chamber prosthesis by utilizing EPR spectroscopy, mechanical testing, and cytotoxicity studies. Our research shows that the radiation treatment increases the hardness and the elastic modulus of the polymer, decreases the stiffness of the prosthesis membrane, and does not cause chemical changes in the polymers that may result in cytotoxicity. Furthermore, new ChSPs were successfully tested in preclinical in vitro tests. The test results justify the undertaking of further work, including in vivo biocompatibility tests and clinical trials, which would eventually lead to the increased use of the prosthesis in clinical practice.
Collapse
Affiliation(s)
- Monika Kwacz
- Institute of Micromechanics and Photonics , Faculty of Mechatronics, Warsaw University of Technology , św. Andrzeja Boboli 8 St. , Warsaw , Poland
| | - Jarosław Sadło
- Centre for Radiation Research and Technology , Institute of Nuclear Chemistry and Technology , Dorodna 16 St. , Warsaw , Poland
| | - Marta Walo
- Centre for Radiation Research and Technology , Institute of Nuclear Chemistry and Technology , Dorodna 16 St. , Warsaw , Poland
| |
Collapse
|
2
|
Andreeva TD, Walker O, Rudt A, Jung O, Barbeck M, Gülcher M, Krastev R. Composite polymer/wax coatings as a corrosion barrier of bioresorbable magnesium coronary stents. Heliyon 2024; 10:e34025. [PMID: 39071686 PMCID: PMC11280269 DOI: 10.1016/j.heliyon.2024.e34025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Magnesium and its alloys are suitable materials for biodegradable biomedical implants such as cardiovascular stents. Here we introduce an innovative composite polyelectrolyte multilayer/wax coating applied to commercial coronary Mg-based stents serving as a barrier layer effectively retarding corrosion. This hydrophobic coating, build by layer-by-layer technology, appeared very thin, smooth, homogeneous, strongly adherent and completely covering the surface of the Mg-stent. In-vitro degradation tests showed greater resistance to degradation of coated Mg-stents compared to uncoated and passivated ones. Cytocompatibility studies proved that Mg-stent coated with the composite coating was non-cytotoxic and improved fibroblast cell viability compared to the uncoated Mg-stent.
Collapse
Affiliation(s)
- Tonya D. Andreeva
- Faculty “Life Sciences”, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, 1113, Sofia, Bulgaria
| | - Oliver Walker
- Faculty “Life Sciences”, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Alexander Rudt
- Faculty “Life Sciences”, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| | - Manfred Gülcher
- QualiMed Innovative Medizinprodukte GmbH, 21423, Winsen, Germany
- Subsidiary of Q3 Medical Devices, Ireland
| | - Rumen Krastev
- Faculty “Life Sciences”, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
- Department “Material Development and Functionalization”, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| |
Collapse
|
3
|
Xue K, Li YJ, Ma TH, Cui LY, Liu CB, Zou YH, Li SQ, Zhang F, Zeng RC. In vitro corrosion resistance and dual antibacterial ability of curcumin loaded composite coatings on AZ31 alloy: Effect of amorphous calcium carbonate. J Colloid Interface Sci 2023; 649:867-879. [PMID: 37390534 DOI: 10.1016/j.jcis.2023.06.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Rapid corrosion and bacterial infection are obstacles to put into use biodegradable magnesium (Mg) alloy as biomedical materials. In this research, an amorphous calcium carbonate (ACC)@curcumin (Cur) loaded poly-methyltrimethoxysilane (PMTMS) coating prepared by self-assembly method on micro-arc oxidation (MAO) coated Mg alloy has been proposed. Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy are adopted to analyze the morphology and composition of the obtained coatings. The corrosion behaviour of the coatings is estimated by hydrogen evolution and electrochemical tests. The spread plate method without or with 808 nm near-infrared irradiation is applied to evaluate the antimicrobial and photothermal antimicrobial ability of the coatings. Cytotoxicity of the samples is tested by 3-(4,5)-dimethylthiahiazo(-z-y1)-2,5-di- phenytetrazoliumromide (MTT) and live/dead assay culturing with MC3T3-E1 cells. Results show that the MAO/ACC@Cur-PMTMS coating exhibited favourable corrosion resistance, dual antibacterial ability, and good biocompatibility. Cur was employed as an antibacterial agent and photosensitizer for photothermal therapy. The core of ACC significantly improved the loading of Cur and the deposition of hydroxyapatite corrosion products during degradation, which greatly promoted the long-term corrosion resistance and antibacterial activity of Mg alloys as biomedical materials.
Collapse
Affiliation(s)
- Kui Xue
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yan-Jin Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Tian-Hao Ma
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lan-Yue Cui
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Cheng-Bao Liu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yu-Hong Zou
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shuo-Qi Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fen Zhang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Rong-Chang Zeng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
4
|
A Superior Corrosion Protection of Mg Alloy via Smart Nontoxic Hybrid Inhibitor-Containing Coatings. Molecules 2023; 28:molecules28062538. [PMID: 36985514 PMCID: PMC10056050 DOI: 10.3390/molecules28062538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The increase of corrosion resistance of magnesium and its alloys by forming the smart self-healing hybrid coatings was achieved in this work in two steps. In the first step, using the plasma electrolytic oxidation (PEO) treatment, a ceramic-like bioactive coating was synthesized on the surface of biodegradable MA8 magnesium alloy. During the second step, the formed porous PEO layer was impregnated with a corrosion inhibitor 8-hydroxyquinoline (8-HQ) and bioresorbable polymer polycaprolactone (PCL) in different variations to enhance the protective properties of the coating. The composition, anticorrosion, and antifriction properties of the formed coatings were studied. 8-HQ allows controlling the rate of material degradation due to the self-healing effect of the smart coating. PCL treatment of the inhibitor-containing layer significantly improves the corrosion and wear resistance and retains an inhibitor in the pores of the PEO layer. It was revealed that the corrosion inhibitor incorporation method (including the number of steps, impregnation, and the type of solvent) significantly matters to the self-healing mechanism. The hybrid coatings obtained by a 1-step treatment in a dichloromethane solution containing 6 wt.% polycaprolactone and 15 g/L of 8-HQ are characterized by the best corrosion resistance. This coating demonstrates the lowest value of corrosion current density (3.02 × 10−7 A cm−2). The formation of the hybrid coating results in the corrosion rate decrease by 18 times (0.007 mm year−1) as compared to the blank PEO layer (0.128 mm year−1). An inhibitor efficiency was established to be 83.9%. The mechanism of corrosion protection of Mg alloy via smart hybrid coating was revealed.
Collapse
|
5
|
Zhou G, Wang F, Lin G, Tang B, Li X, Ding X, Wang W, Zhang J, Shi Y. Novel coatings for the continuous repair of human bone defects. Colloids Surf B Biointerfaces 2023; 222:113127. [PMID: 36610365 DOI: 10.1016/j.colsurfb.2023.113127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Bone defects are the second most common tissue grafts after blood. However, bone grafts face several problems, such as bone scaffolds, which have low bioactivity and are prone to corrosion. Much of the current research on bone scaffolds is focused on the mechanical aspects such as structure and strength. Surface modification of the bone scaffold is carried out in terms of the mechanical structure or structural design of the bone scaffold with reference to a bionic structure. However, with the development of mechanical designs, materials science, and medicine, many studies have reported that promoting bone growth by modifying the structure of the scaffold or coating is not possible. Therefore, the application of a bioactive coating to the surface of the bone scaffold is particularly important to generate a synergistic effect between the structure and active coating. In this article, we present several perspectives to improve the bioactivity of bone scaffolds, including corrosion resistance, loading of bioactive coatings or drugs on bone scaffolds, improved adhesion to the surface of the bone scaffolds, immune response modulation, and drawing on bionic structures during manufacturing.
Collapse
Affiliation(s)
- Guangzhen Zhou
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Fei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China.
| | - Bingtao Tang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Xuelin Li
- School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xinbing Ding
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Wenguang Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
6
|
In Vitro Degradation and Photoactivated Antibacterial Activity of a Hemin-CaP Microsphere-Loaded Coating on Pure Magnesium. J Funct Biomater 2022; 14:jfb14010015. [PMID: 36662062 PMCID: PMC9861195 DOI: 10.3390/jfb14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Photoactivated sterilization has received more attention in dealing with implant-associated infections due to its advantages of rapid and effective bacteriostasis and broad-spectrum antibacterial activity. Herein, a micro-arc oxidation (MAO)/polymethyltrimethoxysilane (PMTMS)@hemin-induced calcium-bearing phosphate microsphere (Hemin-CaP) coating was prepared on pure magnesium (Mg) via MAO processing and dipping treatments. The morphology and composition of the coating were characterized via scanning electron microscopy, Fourier transform infrared spectrometer, X-ray diffractometer and X-ray photoelectron spectrometer. Corrosion behavior was evaluated through electrochemical and hydrogen evolution tests. The release of Fe3+ ions at different immersion times was measured with an atomic absorption spectrophotometer. Antibacterial performance and cytotoxicity were assessed using the spread plate method, MTT assay and live/dead staining experiment. The results showed that the corrosion current density of the MAO/PMTMS@(Hemin-CaP) coating (4.41 × 10-8 A·cm-2) was decreased by two orders of magnitude compared to that of pure Mg (3.12 × 10-6 A·cm-2). Photoactivated antibacterial efficiencies of the Hemin-CaP microspheres and MAO/PMTMS@(Hemin-CaP) coating reached about 99% and 92%, respectively, which we attributed to the photothermal and photodynamic properties of hemin with a porphyrin ring. Moreover, based on the release of Fe3+ ions, the MC3T3-E1 pre-osteoblasts' viability reached up to 125% after a 72 h culture, indicating a positive effect of the coating in promoting cell growth. Thus, this novel composite coating holds a promising application as bone implants.
Collapse
|
7
|
Cao L, Huang Y, Parakhonskiy B, Skirtach AG. Nanoarchitectonics beyond perfect order - not quite perfect but quite useful. NANOSCALE 2022; 14:15964-16002. [PMID: 36278502 DOI: 10.1039/d2nr02537j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order. Here, we look at nanoarchitectonics allowing the building of nanostructures without a perfect arrangement of building blocks. Here, fabrication of structures from molecules, polymers, nanoparticles, and nanosheets to polymer brushes, layer-by-layer assembly structures, and hydrogels through self-assembly processes is discussed, where perfect order is not necessarily the aim to be achieved. Both planar substrate and spherical template-based assemblies are discussed, showing the challenging nature of research in this field and the usefulness of such structures for numerous applications, which are also discussed here.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Yanqi Huang
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Shi L, Chen S, Zheng F, Mingming L, Yang H, Zhang B. Corrosion resistance evaluation of biodegradable magnesium alloy vascular stents optimized by mechanical adapted polymer coating strategy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Ling L, Cai S, Zuo Y, Tian M, Meng T, Tian H, Bao X, Xu G. Copper-doped zeolitic imidazolate frameworks-8/hydroxyapatite composite coating endows magnesium alloy with excellent corrosion resistance, antibacterial ability and biocompatibility. Colloids Surf B Biointerfaces 2022; 219:112810. [PMID: 36070666 DOI: 10.1016/j.colsurfb.2022.112810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
Magnesium (Mg) and its alloys exhibit an excellent prospect for orthopedic clinical application due to their outstanding biodegradability and mechanical adaptability. However, the rapid corrosion rate/latent device-associated infections may lead to a failed internal fixation of Mg-based implants. Herein, a novel composite coating consisted of outer copper-doped zeolitic imidazolate frameworks-8 and inner hydroxyapatite (Cu@ZIF-8/HA) was in situ constructed on AZ31B Mg alloy via a two-step approach of hydrothermal treatment and seeded solvothermal method. The results verified that the electrochemical impedance of the obtained Cu45@ZIF-8/HA composite coating increased by two orders of magnitude to 6.6013 × 104 Ω·cm2 compared to that of bare Mg alloy. This was attributed to the reduced particle size of ZIF-8 nanoparticles due to the doped copper ions, which could be effectively grown in situ on the micro-nano flower-like structure of the HA-coated Mg alloy. Meanwhile, the Cu@ZIF-8/HA coating exhibited excellent antibacterial properties due to the release of copper ions and zinc ions from Cu@ZIF-8 dissolved in bacterial culture solution. The ICP results unraveled that the released concentration of copper and zinc ions could enhance the activity of alkaline phosphatase in the appropriate range during MC3T3-E1 cell culture in vitro for 7 days. This research revealed that the preparation of multifunctional metal-organic frameworks coating doped with antimicrobial metal ions via the seed layer solvothermal method was significant for studying the antimicrobial properties, osteogenic performance and corrosion resistance of Mg-based bioactive coatings.
Collapse
Affiliation(s)
- Lei Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, China
| | - Shu Cai
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, China.
| | - You Zuo
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, China
| | - Meng Tian
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, China
| | - Tengfei Meng
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, China
| | - Hao Tian
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
10
|
Li X, Shen S, Xu Y, Guo T, Hongliang D, Lu X. Transformation and fate of non-reactive phosphorus (NRP) in enhanced biological phosphorus removal process with sidestream phosphorus recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156275. [PMID: 35644401 DOI: 10.1016/j.scitotenv.2022.156275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Recovery of phosphorus (P) from wastewater can help establish a new P cycle. However, there are many P forms in wastewater, not always in reactive forms, which are the most suitable for direct recovery. The enhanced biological phosphorus removal process with sidestream phosphorus recovery (EBPR-SPR) is an effective way to remove and recover P resources in wastewater, but there is a lack of research on the transformation and fate of non-reactive phosphorus (NRP) in it. This study selected four model NRP to investigate their transformation and fate in an EBPR-SPR process. The transformation of NRP in pure water and activated sludge under anaerobic and aerobic conditions were compared. The effects of Ca/P ratio and pH on NRP recovery were studied, and the recovery products of NRP were characterized. It was found that NRP containing phosphoanhydride and phosphoester bonds were more easily hydrolyzed to reactive P (RP) than that containing PC bonds. NRP will be adsorbed and accumulated by activated sludge, and activated sludge will accelerate the conversion of NRP to RP. Tripolyphosphate can form complex precipitation with Ca2+. When multiform P co-existed, Ca2+ preferably complexed with polyphosphate, which harmed RP recovery. The conversion of NRP should be strengthened to recover more P in wastewater. The effect of NRP should be considered when recovering P from wastewater.
Collapse
Affiliation(s)
- Xiang Li
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China.
| | - Shuting Shen
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China
| | - Yuye Xu
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China
| | - Ting Guo
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China
| | - Dai Hongliang
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212018, China.
| | - Xiwu Lu
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China.
| |
Collapse
|
11
|
Electrochemical Short-Time Testing Method for Simulating the Degradation Behavior of Magnesium-Based Biomaterials. METALS 2022. [DOI: 10.3390/met12040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In regenerative medicine, degradable, magnesium-based biomaterials represent a promising material class. The low corrosion resistance typical for magnesium is advantageous for this application since the entire implant degrades in the presence of the aqueous body fluids after fulfilling the intended function, making a second operation for implant removal obsolete. To ensure sufficient stability within the functional phase, the degradation behavior must be known for months. In order to reduce time and costs for these long-time investigations, an electrochemical short-time testing method is developed and validated, accelerating the dissolution process of a magnesium alloy with and without surface modification based on galvanostatic anodic polarization, enabling a simulation of longer immersion times. During anodic polarization, the hydrogen gas formed by the corrosion process increases linearly. Moreover, the gas volume shows a linear relationship to the dissolving mass, enabling a defined dissolution of magnesium. As a starting point, corrosion rates of both variants from three-week immersion tests are used. A simplified relationship between the current density and the dissolution rate, determined experimentally, is used to design the experiments. Ex situ µ-computed tomography scans are performed to compare the degradation morphologies of both test strategies. The results demonstrate that a simulation of the degradation rates and, hence, considerable time saving based on galvanostatic anodic polarization is possible. Since the method is accompanied by a changed degradation morphology, it is suitable for a worst-case estimation allowing the exclusion of new, unsuitable magnesium systems before subsequent preclinical studies.
Collapse
|
12
|
In vitro degradation, photo-dynamic and thermal antibacterial activities of Cu-bearing chlorophyllin-induced Ca–P coating on magnesium alloy AZ31. Bioact Mater 2022; 18:284-299. [PMID: 35387161 PMCID: PMC8961461 DOI: 10.1016/j.bioactmat.2022.01.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 12/20/2022] Open
|
13
|
Hafez IT, Biskos G. New method for the protection and restoration of calcareous cultural heritage stones by polyelectrolytes and hydroxyapatite nanocrystals. J Colloid Interface Sci 2021; 604:604-615. [PMID: 34280758 DOI: 10.1016/j.jcis.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
Abstract
We have investigated the feasibility of a new two-step protocol for the restoration of marbles. The process employs a polyelectrolyte multilayer film that enhances the chemical affinity between the treated stone and restorative material (hydroxyapatite nanocrystals), through functionalization, while at the same time it attributes an acid resistant property to the resulting system. Surface functionalization and material deposition is achieved through spraying; a simple and versatile application method suitable for objects of various sizes and geometries. Polyelectrolyte (polyethylenimine and polyacrylic acid) deposition was examined through Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy (ATR-FTIR) and Atomic Force Microscopy (AFM), and tested through contact angle, water absorption and dissolution experiments. The hydroxyapatite nanocrystals were studied by ATR-FTIR, z-potential, AFM and Scanning Electron Microscopy (SEM), and characterized via contact angle and color alteration measurements. Our results show that the polyelectrolyte multilayer was stable in an aqueous environment with increased acid resistance (up to 46% decrease in mass weight loss when compared with untreated samples) and decreased water absorption (up to 39%). Color measurements of the outer hydroxyapatite layer showed a minimal color alteration for one type of the tested substrates showing low color difference values (ΔΕ* < 5). The results suggest that the proposed method holds great potential for marble restoration as it attributes multi-functionality and is easy to apply.
Collapse
Affiliation(s)
- Iosif T Hafez
- Science and Technology in Archaeology and Culture Research Center, The Cyprus Institute, Nicosia 2121, Cyprus; Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus.
| | - George Biskos
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus; Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628 CN, the Netherlands
| |
Collapse
|
14
|
Khosravi H. S, Vallant R, Ladenstein L, Reichmann K. Electrochemical and Structural Property of TiSiNb TFSOC on Affordable Interconnects in Proton Exchange Membrane Fuel Cell Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2010. [PMID: 33053755 PMCID: PMC7599566 DOI: 10.3390/nano10102010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 11/25/2022]
Abstract
High cost and low electrochemical stability of the interconnection in Proton Exchange Membrane Fuel Cell (PEMFC) in the presence of H2SO4 are one of the main issues hindering the commercialization of these devices. This manuscript presents the utilization of cost-effective steel in an attempt to minimize the PEMFC interconnection costs with a thin-film solid oxide coating (TFSOC) providing sufficient corrosion resistance for efficient long-term operation. Novel Ti0.50-y/2Si0.50-y/2Nby1,2O2 as TFSOC was deposited on the C45E steel as a metal interconnect utilizing a sol-gel process at various annealing temperatures. The analysis of the phase and surface morphology demonstrates that lower annealing temperatures developed nanometric crystallite size of 68 nm, more uniform structure and higher corrosion resistance. Under standard test conditions, the TFSOC demonstrated high polarization resistance (1.3 kΩ cm2) even after 720 hours (h). Electrical conductivity of the TFSOC as low as 1.4 × 10-2 (Ω m)-1 and activation energy of 0.20 eV were achieved, which helps to maintain the PEMFC output power.
Collapse
Affiliation(s)
- Saman Khosravi H.
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria;
| | - Rudolf Vallant
- Institute of Materials Science, Joining and Forming, Graz University of Technology, Kopernikusgasse 24/I, 8010 Graz, Austria;
| | - Lukas Ladenstein
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria;
| | - Klaus Reichmann
- Institute of Materials Science, Joining and Forming, Graz University of Technology, Kopernikusgasse 24/I, 8010 Graz, Austria;
| |
Collapse
|
15
|
Dong Q, Zhou X, Feng Y, Qian K, Liu H, Lu M, Chu C, Xue F, Bai J. Insights into self-healing behavior and mechanism of dicalcium phosphate dihydrate coating on biomedical Mg. Bioact Mater 2020; 6:158-168. [PMID: 32817922 PMCID: PMC7426540 DOI: 10.1016/j.bioactmat.2020.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Self-healing coatings have been developed as smart surface coatings for Mg and its alloys to retain local corrosion from the coating damages. In this study, we prepared dicalcium phosphate dihydrate (DCPD) coating on biomedical Mg, and found that the artificial scratches in DCPD coating can be efficiently sealed by anti-corrosive products in both Hank's and normal saline (NS) solutions. Besides, the in-depth study revealed that DCPD was served as not only a physical barrier but also a self-healing agent, demonstrating an autonomous self-healing coating without embedded extra corrosion inhibitors. Moreover, Hank's solution provided foreign-aid film-forming ions to promote self-healing behavior. The findings might offer new opportunities for further studies and applications of efficient self-healing coatings on biodegradable Mg implants. DCPD coating on Mg exhibited self-healing behavior in Hank's and NS solutions. DCPD was acted as not only a physical barrier but also a self-healing agent. DCPD was sensitive to pH, and offered Ca2+ and PO43− ions for self-healing. Hank's solution provided extra film-forming ions to promote self-healing behavior.
Collapse
Affiliation(s)
- Qiangsheng Dong
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Xingxing Zhou
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yuanjia Feng
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Kun Qian
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Huan Liu
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
| | - Mengmeng Lu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Feng Xue
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Jing Bai
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| |
Collapse
|
16
|
Li LY, Han ZZ, Zeng RC, Qi WC, Zhai XF, Yang Y, Lou YT, Gu T, Xu D, Duan JZ. Microbial ingress and in vitro degradation enhanced by glucose on bioabsorbable Mg-Li-Ca alloy. Bioact Mater 2020; 5:902-916. [PMID: 32637753 PMCID: PMC7329939 DOI: 10.1016/j.bioactmat.2020.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023] Open
Abstract
Biodegradable magnesium alloys are challenging to be implanted in patients with hyperglycemia and diabetes. A hypothesis is suggested that glucose accelerates microbial ingress and in vitro degradation of Mg-Li-Ca implants. Corrosion resistance and mechanical properties was demonstrated using electrochemical, hydrogen evolution and tensile tests. The bacteria from Hank's solution were isolated via 16S rRNA gene analysis. The results revealed that Mg-1Li-1Ca alloy exhibited different responses to Hank's solution with and without glucose. The solution acidity was ascribed to Microbacterium hominis and Enterobacter xiangfangensis, indicating that glucose promoted microbial activity and degradation and deterioration in mechanical property of Mg-1Li-1Ca alloy.
Collapse
Affiliation(s)
- Ling-Yu Li
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhuang-Zhuang Han
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Rong-Chang Zeng
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, China
| | - Wei-Chen Qi
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiao-Fan Zhai
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266590, China
| | - Yi Yang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
| | - Yun-Tian Lou
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
| | - Tingyue Gu
- Department of Chemical & Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH, 45701-2979, USA
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
| | - Ji-Zhou Duan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266590, China
| |
Collapse
|
17
|
Gao F, Hu Y, Li G, Liu S, Quan L, Yang Z, Wei Y, Pan C. Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility. Bioact Mater 2020; 5:611-623. [PMID: 32405576 PMCID: PMC7212186 DOI: 10.1016/j.bioactmat.2020.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Magnesium alloy is considered as one of the ideal cardiovascular stent materials owing to its good mechanical properties and biodegradability. However, the in vivo rapid degradation rate and the insufficient biocompatibility restrict its clinical applications. In this study, the magnesium alloy (AZ31B) was modified by combining the surface chemical treatment and in-situ self-assembly of 16-phosphonyl-hexadecanoic acid, followed by the immobilization of chitosan-functionalized graphene oxide (GOCS). Heparin (Hep) and GOCS were alternatively immobilized on the GOCS-modified surface through layer by layer (LBL) to construct the GOCS/Hep bioactive multilayer coating, and the corrosion resistance and biocompatibility were extensively explored. The results showed that the GOCS/Hep bioactive multilayer coating can endow magnesium alloys with an excellent in vitro corrosion resistance. The GOCS/Hep multilayer coating can significantly reduce the hemolysis rate and the platelet adhesion and activation, resulting in an excellent blood compatibility. In addition, the multilayer coating can not only enhance the adhesion and proliferation of the endothelial cells, but also promote the vascular endothelial growth factor (VEGF) and nitric oxide (NO) expression of the attached endothelial cells on the surfaces. Therefore, the method of the present study can be used to simultaneously control the corrosion resistance and improve the biocompatibility of the magnesium alloys, which is expected to promote the application of magnesium alloys in biomaterials or medical devices, especially cardiovascular stent. The multilayer coating of GOCS and heparin was constructed on magnesium surface. The coating can obviously improve the corrosion resistance of magnesium alloys. The coating can enhance the hemocompatibility and endothelial cell growth behaviors.
Collapse
Affiliation(s)
- Fan Gao
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Youdong Hu
- Department of Geriatrics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Guicai Li
- Jiangsu Key Laboratory of Nerve Regeneration, Nantong University, Nantong 226001, China
| | - Sen Liu
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Li Quan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhongmei Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yanchun Wei
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
- Corresponding author.
| |
Collapse
|
18
|
Yan W, Lian YJ, Zhang ZY, Zeng MQ, Zhang ZQ, Yin ZZ, Cui LY, Zeng RC. In vitro degradation of pure magnesium-the synergetic influences of glucose and albumin. Bioact Mater 2020; 5:318-333. [PMID: 32181417 PMCID: PMC7063336 DOI: 10.1016/j.bioactmat.2020.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 11/17/2022] Open
Abstract
The biocorrosion of magnesium in the external physiological environment is still difficult to accurately evaluate the degradation behavior in vivo, particularly, in the microenvironment of the patients with hyperglycemia or diabetes. Thus, we explored the synergistic effects of glucose and protein on the biodegradation of pure magnesium, so as to have a deeper understanding the mechanism of the degradation in vivo. The surface morphology and corrosion product composition of pure magnesium were investigated using SEM, EDS, FTIR, XRD and XPS. The effect of glucose and albumin on the degradation rate of pure magnesium was investigated via electrochemical and immersion tests. The adsorption of glucose and albumin on the sample surface was observed using fluorescence microscopy. The results showed that the presence of 2 g/L glucose changed the micromorphology of corrosion products on the magnesium surface by reacting with metal cations, thus inhibiting the corrosion of pure magnesium. Protein formed a barrier layer to protect the magnesium at early stage of immersion. The chelation reaction between protein and magnesium surface might accelerate the degradation at later stage. There may be a critical glucose (albumin) content. Biodegradation of pure magnesium was inhibited at low concentrations and promoted at high concentrations. The synergistic effect of glucose and protein restrained the adsorption of aggressive chloride ions to a certain extent, and thus inhibited the degradation of pure magnesium considerably. Moreover, XPS results indicated that glucose promoted the adsorption of protein on the sample surface.
Collapse
Affiliation(s)
- Wei Yan
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yi-Jie Lian
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhi-Yuan Zhang
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Mei-Qi Zeng
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhao-Qi Zhang
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zheng-Zheng Yin
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Lan-Yue Cui
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Rong-Chang Zeng
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, China
- Corresponding author. Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|