1
|
Yan L, Han X, Zhang M, Fu Y, Yang F, Li Q, Cheng T. Integrative analysis of TBI data reveals Lgmn as a key player in immune cell-mediated ferroptosis. BMC Genomics 2023; 24:747. [PMID: 38057699 DOI: 10.1186/s12864-023-09842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a central nervous system disease caused by external trauma, which has complex pathological and physiological mechanisms. The aim of this study was to explore the correlation between immune cell infiltration and ferroptosis post-TBI. METHODS This study utilized the GEO database to download TBI data and performed differentially expressed genes (DEGs) and ferroptosis-related differentially expressed genes (FRDEGs) analysis. DEGs were further analyzed for enrichment using the DAVID 6.8. Immunoinfiltration cell analysis was performed using the ssGSEA package and the Timer2.0 tool. The WGCNA analysis was then used to explore the gene modules in the data set associated with differential expression of immune cell infiltration and to identify the hub genes. The tidyverse package and corrplot package were used to calculate the correlations between hub genes and immune cell infiltration and ferroptosis-marker genes. The miRDB and TargetScan databases were used to predict complementary miRNAs for the Hub genes selected from the WGCNA analysis, and the DIANA-LncBasev3 tool was used to identify target lncRNAs for the miRNAs, constructing an mRNA-miRNA-lncRNA regulatory network. RESULTS A total of 320 DEGs and 21 FRDEGs were identified in GSE128543. GO and KEGG analyses showed that the DEGs after TBI were primarily associated with inflammation and immune response. Xcell and ssGSEA immune infiltration cell analysis showed significant infiltration of T cell CD4+ central memory, T cell CD4+ Th2, B cell memory, B cell naive, monocyte, macrophage, and myeloid dendritic cell activated. The WGCNA analysis identified two modules associated with differentially expressed immune cells and identified Lgmn as a hub gene associated with immune infiltrating cells. Lgmn showed significant correlation with immune cells and ferroptosis-marker genes, including Gpx4, Hspb1, Nfe2l2, Ptgs2, Fth1, and Tfrc. Finally, an mRNA-miRNA-lncRNA regulatory network was constructed using Lgmn. CONCLUSION Our results indicate that there is a certain correlation between ferroptosis and immune infiltrating cells in brain tissue after TBI, and that Lgmn plays an important role in this process.
Collapse
Affiliation(s)
- Liyan Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaonan Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mingkang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yikun Fu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Tian Cheng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
2
|
Dai F, Lv K, Zhang B, Zhao J, Wang S, Lan K, Zhao Y, Zhang X, Kan B. Overcoming the structure deficiency of nanodrug coated with tannic acid shell through phenolic hydroxyl protection strategy for Alzheimer's disease combination treatment. BIOMATERIALS ADVANCES 2023; 154:213651. [PMID: 37827021 DOI: 10.1016/j.bioadv.2023.213651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Tannic acid (TA) shell is of great interest for nanodrug design due to its versatile application such as antioxidant, antibacterial, anti-inflammatory. However, evidence is emerging that TA air oxidation in storage stage and unfavorable interactions of TA with electrolyte or protein in drug delivery could bring great challenge for the structure stability of nanodrug. In this study, a smart TA shell of nanomicelles was constructed through phenolic hydroxyl protection strategy, and the antioxidant capacity of nanomicelles maintain stable after 24 days storage. The phenolic hydroxyl protective tannic acid micelles (PHPTA micelles) show excellent performance for combination delivery of azoramide (Azo), dantrolene (Dan), Trazodone (Tra) in accelerated senescence (SAMP8) mice. This study may pave the way for the fabrication of nanodrugs with stable and smart TA shell for oxidative stress relevant diseases.
Collapse
Affiliation(s)
- Fengying Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Kepeng Lv
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Bo Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Junqiang Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shaoteng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ke Lan
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaolei Zhang
- Hebei Research Centre of Analysis and Testing, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Bohong Kan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| |
Collapse
|
3
|
Wang Y, Liu W, Dong X, Sun Y. Design of Self-Assembled Nanoparticles as a Potent Inhibitor and Fluorescent Probe for β-Amyloid Fibrillization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12576-12589. [PMID: 37624641 DOI: 10.1021/acs.langmuir.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Alzheimer's disease (AD) remains incurable due to its complex pathogenesis. The deposition of β-amyloid (Aβ) in the brain appears much earlier than any clinical symptoms and plays an essential role in the occurrence and development of AD neuropathology, which implies the importance of early theranostics. Herein, we designed a self-assembled bifunctional nanoparticle (LC8-pCG-fLC8) for Aβ fluorescent diagnosis and inhibition. The nanoparticle was synthesized by click chemistry from Aβ-targeting peptide Ac-LVFFARKC-NH2 (LC8) and an Aβ fluorescent probe f with the zwitterionic copolymer poly(carboxybetaine methacrylate-glycidyl methacrylate) (p(CBMA-GMA), pCG). Owing to the high reactivity of epoxy groups, the peptide concentration of LC8-pCG-fLC8 nanoparticles reached about 4 times higher than that of the existing inhibitor LVFFARK@poly(carboxybetaine) (LK7@pCB). LC8-pCG-fLC8 exhibited remarkable inhibitory capability (suppression efficiency of 83.0% at 20 μM), altered the aggregation pathway of Aβ, and increased the survival rate of amyloid-induced cultured cells from 76.5% to 98.0% at 20 μM. Notably, LC8-pCG-fLC8 possessed excellent binding affinity, good biostability, and high fluorescence responsivity to β-sheet-rich Aβ oligomers and fibrils, which could be used for the early diagnosis of Aβ aggregation. More importantly, in vivo tests using transgenic C. elegans CL2006 stain showed that LC8-pCG-fLC8 could specifically image Aβ plaques, prolong the lifespan (from 13 to 17 days), and attenuate the AD-like symptoms (reducing paralysis and Aβ deposition). Therefore, self-assembled nanoparticles hold great potential in AD theranostics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Yang S, Wang M, Wang T, Sun M, Huang H, Shi X, Duan S, Wu Y, Zhu J, Liu F. Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications. Mater Today Bio 2023; 20:100644. [PMID: 37214549 PMCID: PMC10199221 DOI: 10.1016/j.mtbio.2023.100644] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023] Open
Abstract
Self-assembled short peptides have intrigued scientists due to the convenience of synthesis, good biocompatibility, low toxicity, inherent biodegradability and fast response to change in the physiological environment. Therefore, it is necessary to present a comprehensive summary of the recent advances in the last decade regarding the construction, route of administration and application of self-assembled short peptides based on the knowledge on their unique and specific ability of self-assembly. Herein, we firstly explored the molecular mechanisms of self-assembly of short peptides, such as non-modified amino acids, as well as Fmoc-modified, N-functionalized, and C-functionalized peptides. Next, cell penetration, fusion, and peptide targeting in peptide-based drug delivery were characterized. Then, the common administration routes and the potential pharmaceutical applications (drug delivery, antibacterial activity, stabilizers, imaging agents, and applications in bioengineering) of peptide drugs were respectively summarized. Last but not least, some general conclusions and future perspectives in the relevant fields were briefly listed. Although with certain challenges, great opportunities are offered by self-assembled short peptides to the fascinating area of drug development.
Collapse
Affiliation(s)
- Shihua Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Mingge Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Anus and Intestine Surgery, The First Hospital of Dalian Medical University, Dalian, 116000, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Ying Wu
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| |
Collapse
|
5
|
Ren J, Hu H, Wang S, He Y, Ji Y, Chen Y, Wang K, Zhang H, Zhao Y, Dai F. Prevent Drug Leakage via the Boronic Acid Glucose-Insensitive Micelle for Alzheimer's Disease Combination Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23182-23193. [PMID: 35544753 DOI: 10.1021/acsami.2c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Boronic acid (BA) materials have been widely applied to glucose and oxidative stress-sensitive drug delivery for the treatment of cancer, diabetes, and Alzheimer's disease (AD). There are completely various BA-sensitive delivery conditions in different diseases. BA materials in the treatment of diabetes show better performance at a high-glucose environment than normal. In contrast, the concentration of glucose in the brain is much lower than that in the blood of AD patients. Hence, the typical glucose and oxidative stress dual-sensitive BA materials inevitably encounter drug leakage in circulation in AD. Attempts to decrease the glucose-sensitive capacity of BA materials are extremely essential for AD drug delivery. In this study, the epoxy group (electron-donating group) was introduced to increase the pKa values of BA materials by increasing the electron cloud density, and thus, the glucose-insensitive micelle (GIM) was obtained. The treatment effect and the synergism mechanism of the drug-loaded GIM micelle were studied on senescence-accelerated mouse prone 8 mice. This work provided excellent antioxidant drugs (vitamin E succinate, melatonin, and quercetin) and a glucose metabolism drug (insulin) loaded in GIM micelle for AD treatment. The discovery of the combination mechanism is enormously valuable for AD clinical research.
Collapse
Affiliation(s)
- Jian Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haodong Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shaoteng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang He
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yanhong Ji
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiran Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Kangna Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haiyan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Fengying Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
6
|
Xi Y, Chen Y, Jin Y, Han G, Song M, Song T, Shi Y, Tao L, Huang Z, Zhou J, Ding Y, Zhang H. Versatile nanomaterials for Alzheimer's disease: Pathogenesis inspired disease-modifying therapy. J Control Release 2022; 345:38-61. [DOI: 10.1016/j.jconrel.2022.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/11/2022]
|
7
|
Ren J, Jiang F, Wang S, Hu H, Zhang B, Zhao YP, Chen L, Lv Z, Dai F. Hydrophilic hindering and hydrophobic growing: a vesicle glycometabolism multi-drug combination therapeutic against Alzheimer's disease. Biomater Sci 2021; 9:6444-6460. [PMID: 34582535 DOI: 10.1039/d1bm00696g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advanced drug vehicle exploitation and the sophisticated synergy mechanism revelation are two great difficulties in combination therapy. Compared with most readily available polymer micelles, some undiscovered complex chemical design principles limit the expanding research of polymer vesicles. Here, polycaprolactone (PCL)-g-Dextran vesicle that dextran brush steric hindrance guide PCL lamellae-aligned growth was synthesized. The effect of the glycometabolism multi-drug vesicle combination treatment and synergism mechanism were investigated on senescence-accelerated mouse prone 8 (SAMP8) mice. The main insulin sensitizer drug could improve the memory ability of mice to a small extent, and the main insulin secretion promoter drug had little beneficial effect. Moreover, the triple anti-insulin resistant drugs of insulin (INS), repaglinide (REP) and metformin hydrochloride (MET) activated the glycometabolism-related bio-signals, and the energy cycle was normalized successfully. The insulin intracellular uptake and utilization efficiency could be the reason for the gap. The upregulation of the brain-derived neurotrophic factor (BDNF) protein confirmed that the crosstalk between the mitochondria and synapse contributes to the nerve repair. This study provided an excellent drug combination vesicle to treat Alzheimer's disease (AD). The discovery of the combination mechanism leads to an improvement in the AD clinical treatment.
Collapse
Affiliation(s)
- Jian Ren
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Fuxin Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Shaoteng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Haodong Hu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Bo Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Yi Ping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Zhengang Lv
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences and Synfuels China Co., Ltd., Beijing 100013, China
| | - Fengying Dai
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|