1
|
Deng S, Zhang S, Shen T, Wang X, Gao Z, Zhang W, Dai K, Wang J, Liu C. Amphiphilic cytokine traps remodel marrow adipose tissue for hematopoietic microenvironment amelioration. Bioact Mater 2024; 42:226-240. [PMID: 39285915 PMCID: PMC11404087 DOI: 10.1016/j.bioactmat.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is extensively employed in the treatment of hematological malignancies but is markedly constrained by the paucity of hematopoietic stem/progenitor cells (HSPCs). Recent studies have found that marrow adipose tissue (MAT) acts on hematopoiesis through complicated mechanisms. Therefore, the osteo-organoids fabricated in vivo using biomaterials loaded with recombinant human bone morphogenetic protein 2 (rhBMP-2) have been used as models of MAT for our research. To obtain sufficient amounts of therapeutic HSPCs and healthy MAT, we have developed amphiphilic chitosan (AC)-gelatin as carriers of rhBMP-2 to the regulate type conversion of adipose tissue and trap hematopoietic growth factors. Unlike medicine interventions or cell therapies, the traps based on AC not only attenuate the occupancy of adipocytes within the hematopoietic microenvironment while preserving stem cell factor concentrations, but also improve marrow metabolism by promoting MAT browning. In conclusion, this approach increases the proportion of HSPCs in osteo-organoids, and optimizes the composition and metabolic status of MAT. These findings furnish an experimental basis for regulating hematopoiesis in vivo through materials that promote the development of autologous HSPCs. Additionally, this approach presents a theoretical model of rapid adipogenesis for the study of adipose-related pathologies and potential pharmacological targets.
Collapse
Affiliation(s)
- Shunshu Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shuang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Tong Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xuanlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zehua Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wenchao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Kai Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
2
|
He X, Li Y, Zou D, Zu H, Li W, Zheng Y. An overview of magnesium-based implants in orthopaedics and a prospect of its application in spine fusion. Bioact Mater 2024; 39:456-478. [PMID: 38873086 PMCID: PMC11170442 DOI: 10.1016/j.bioactmat.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
Due to matching biomechanical properties and significant biological activity, Mg-based implants present great potential in orthopedic applications. In recent years, the biocompatibility and therapeutic effect of magnesium-based implants have been widely investigated in trauma repair. In contrast, the R&D work of Mg-based implants in spinal fusion is still limited. This review firstly introduced the general background for Mg-based implants. Secondly, the mechanical properties and degradation behaviors of Mg and its traditional and novel alloys were reviewed. Then, different surface modification techniques of Mg-based implants were described. Thirdly, this review comprehensively summarized the biological pathways of Mg degradation to promote bone formation in neuro-musculoskeletal circuit, angiogenesis with H-type vessel formation, osteogenesis with osteoblasts activation and chondrocyte ossification as an integrated system. Fourthly, this review followed the translation process of Mg-based implants via updating the preclinical studies in fracture fixation, sports trauma repair and reconstruction, and bone distraction for large bone defect. Furthermore, the pilot clinical studies were involved to demonstrate the reliable clinical safety and satisfactory bioactive effects of Mg-based implants in bone formation. Finally, this review introduced the background of spine fusion surgeryand the challenges of biological matching cage development. At last, this review prospected the translation potential of a hybrid Mg-PEEK spine fusion cage design.
Collapse
Affiliation(s)
- Xuan He
- Department of Orthopaedics, Peking University Third Hospital, No.49 North Huayuan Road, Haidian, Beijing, PR China
| | - Ye Li
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
| | - Da Zou
- Department of Orthopaedics, Peking University Third Hospital, No.49 North Huayuan Road, Haidian, Beijing, PR China
| | - Haiyue Zu
- Department of Orthopaedics, The First Affiliated Hospital of Suchow University, PR China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, No.49 North Huayuan Road, Haidian, Beijing, PR China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Comprehensive Scientific Research Building, Beijing, PR China
| |
Collapse
|
3
|
Xiao H, Li W, Qin Y, Lin Z, Qian C, Wu M, Xia Y, Bai J, Geng D. Crosstalk between Lipid Metabolism and Bone Homeostasis: Exploring Intricate Signaling Relationships. RESEARCH (WASHINGTON, D.C.) 2024; 7:0447. [PMID: 39165638 PMCID: PMC11334918 DOI: 10.34133/research.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Bone is a dynamic tissue reshaped by constant bone formation and bone resorption to maintain its function. The skeletal system accounts for approximately 70% of the total volume of the body, and continuous bone remodeling requires quantities of energy and material consumption. Adipose tissue is the main energy storehouse of the body and has a strong adaptive capacity to participate in the regulation of various physiological processes. Considering that obesity and metabolic syndrome have become major public health challenges, while osteoporosis and osteoporotic fractures have become other major health problems in the aging population, it would be interesting to explore these 2 diseases together. Currently, an increasing number of researchers are focusing on the interactions between multiple tissue systems, i.e., multiple organs and tissues that are functionally coordinated together and pathologically pathologically interact with each other in the body. However, there is lack of detailed reviews summarizing the effects of lipid metabolism on bone homeostasis and the interactions between adipose tissue and bone tissue. This review provides a detailed summary of recent advances in understanding how lipid molecules and adipose-derived hormones affect bone homeostasis, how bone tissue, as a metabolic organ, affects lipid metabolism, and how lipid metabolism is regulated by bone-derived cytokines.
Collapse
Affiliation(s)
- Haixiang Xiao
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei 230022, China
| | - Wenming Li
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yi Qin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhixiang Lin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chen Qian
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Mingzhou Wu
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yu Xia
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, Jingjiang People’s Hospital Affiliated to Yangzhou University, Jingjiang 214500, Jiangsu Province, China
| | - Dechun Geng
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
4
|
Liu W, Yang J, Li S, Ye X, Yang P, Zhang J. Hyperlipidemia impairs bone regeneration of closed bone defects and tooth extraction wounds in mice. J Periodontal Res 2023; 58:1201-1211. [PMID: 37587560 DOI: 10.1111/jre.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/08/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVES To evaluate the effect of hyperlipidemia on the healing of bone defects. MATERIALS AND METHODS Apolipoprotein E (ApoE)-deficient mice and wild-type (WT) C57BL/6J mice were fed with an atherogenic high-fat diet (HFD) or a standard chow diet (as control) for 6 weeks. Blood samples were collected to evaluate serum lipid levels. Closed bone defects and open tooth extraction wounds were then created in the mandibles of these animals. One or two weeks after surgery, animals were euthanized. Micro-CT analysis and histomorphometric analysis were conducted to evaluate the healing of bone defects and the alveolar ridge resorption. RESULTS Bone regeneration of closed bone defects was considerably delayed in the hyperlipidemic Apoe-/- mice and WT mice. No obvious difference was detected in the new bone formation of the tooth extraction wounds. The HFD-fed mice showed more prominent reduction in the lingual alveolar ridge height of the tooth extraction wounds when compared with the control group. CONCLUSIONS Hyperlipidemia results in delayed bone regeneration in large closed bone defects. Although tooth extraction wounds are small and normally regenerated in a hyperlipidemic microenvironment, the prominent reduction in the alveolar ridge height is also a challenge for future restoration of the dentition.
Collapse
Affiliation(s)
- Wenchuan Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Jing Yang
- Department of Dentistry, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Shanshan Li
- Dental Department, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xin Ye
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Jin Zhang
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| |
Collapse
|
5
|
Zhao Y, He P, Yao J, Li M, Wang B, Han L, Huang Z, Guo C, Bai J, Xue F, Cong Y, Cai W, Chu PK, Chu C. pH/NIR-responsive and self-healing coatings with bacteria killing, osteogenesis, and angiogenesis performances on magnesium alloy. Biomaterials 2023; 301:122237. [PMID: 37467596 DOI: 10.1016/j.biomaterials.2023.122237] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Although biodegradable polymer coatings can impede corrosion of magnesium (Mg)-based orthopedic implants, they are prone to excessive degradation and accidental scratching in practice. Bone implant-related infection and limited osteointegration are other factors that adversely impact clinical application of Mg-based biomedical implants. Herein, a self-healing polymeric coating is constructed on the Mg alloy together with incorporation of a stimuli-responsive drug delivery nanoplatform by a spin-spray layer-by-layer (SSLbL) assembly technique. The nanocontainers are based on simvastatin (SIM)-encapsulated hollow mesoporous silica nanoparticles (S@HMSs) modified with polydopamine (PDA) and polycaprolactone diacrylate (PCL-DA) bilayer. Owing to the dynamic reversible reactions, the hybrid coating shows a fast, stable, and cyclical water-enabled self-healing capacity. The antibacterial assay indicates good bacteria-killing properties under near infrared (NIR) irradiation due to synergistic effects of hyperthermia, reactive oxygens species (ROS), and SIM leaching. In vitro results demonstrate that NIR laser irradiation promotes the cytocompatibility, osteogenesis, and angiogenesis. The coating facilitates alkaline phosphatase activity and expedites extracellular matrix mineralization as well as expression of osteogenesis-related genes. This study reveals a useful strategy to develop multifunctional coatings on bioabsorbable Mg alloys for orthopedic implants.
Collapse
Affiliation(s)
- Yanbin Zhao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Peng He
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Junyan Yao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Bin Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Linyuan Han
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Zhihai Huang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chao Guo
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yu Cong
- Jinling Hospital Department of Orthopedics, Southeast University, School of Medicine, Nanjing, 210002, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
6
|
Gujjala S, Bangeppagari M, Devarakonda VLNP, Bellamkonda R, Bhadramraju R, Kameswaran S, Ramaswamy R, Desireddy S. Pleiotropic effects of Salacia reticulata and Simvastatin on oxidative stress and insulin resistance in a rat model. Biomed Pharmacother 2023; 164:114960. [PMID: 37290186 DOI: 10.1016/j.biopha.2023.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND The present study investigated the effects of Salacia reticulata and simvastatin on oxidative stress and insulin resistance in Sprague-Dawley (SD) rats. We compared the protective effect of a methanolic extract of Salacia reticulata (SR) with simvastatin (SVS) in rats fed a high-fat diet (HFD). METHODS AND RESULTS Male Sprague-Dawley rats were divided into the following five different groups: control (C), C+SR, HFD, HFD+SR, and HFD+SVS. High-fat diet fed rats showed hyperglycemia, hyperinsulinemia, hyperleptinemia, dyslipidemia, and hypoadiponectinemia after 90 days. Treatment of high-fat diet fed rats with SR/SVS significantly (p < 0.05) reduced high-fat diet induced increases in plasma triglycerides, total cholesterol, very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL) and decreased high- density lipoprotein (HDL) accompanied by an increase in lipid peroxidation (LPO) and protein oxidation. In addition, a significant decrease in the activities of antioxidant enzymes and enzymes of the polyol pathway was observed in rats fed high-fat diet. SR was found to be more effective than SVS. Moreover, infiltration of inflammatory cells and fibrosis in the liver of high-fat diet fed rats by SR/SVS were also prevented. CONCLUSIONS The present study confirms that SR/SVS may be a new and promising remedial approach because of its beneficial effects on the pathophysiological processes of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sudhakara Gujjala
- Department of Biochemistry, Sri Krishnadevaraya University, Ananthapuram, Andhra Pradesh, India.
| | - Manjunatha Bangeppagari
- Department of Cell Biology & Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to Be University), Tamaka, Kolar 563103, Karnataka, India
| | | | - Ramesh Bellamkonda
- Department of Food Technology, Vikrama Simhapuri University, Kakutur, SPSR Nellore, Andhra Pradesh, India
| | - Ramu Bhadramraju
- Department of Biochemistry, Sri Krishnadevaraya University, Ananthapuram, Andhra Pradesh, India
| | - Srinivasan Kameswaran
- Department of Botany, Vikrama Simhapuri University College, Kavali, Nellore, Andhra Pradesh, India
| | | | - Saralakumari Desireddy
- Department of Biochemistry, Sri Krishnadevaraya University, Ananthapuram, Andhra Pradesh, India.
| |
Collapse
|
7
|
Nartea R, Mitoiu BI, Ghiorghiu I. The Link between Magnesium Supplements and Statin Medication in Dyslipidemic Patients. Curr Issues Mol Biol 2023; 45:3146-3167. [PMID: 37185729 PMCID: PMC10136538 DOI: 10.3390/cimb45040205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/17/2023] Open
Abstract
Many investigations have discovered a connection between statins and magnesium supplements. On one hand, increasing research suggests that chronic hypomagnesemia may be an important factor in the etiology of some metabolic illnesses, including obesity and overweight, insulin resistance and type 2 diabetes mellitus, hypertension, alterations in lipid metabolism, and low-grade inflammation. Chronic metabolic problems seem to be prevented by a high Mg intake combined with diet and/or supplements. On the other hand, it is known that statins lower the frequency of cardiac events, stroke, and mortality, not by lowering LDL-C, but by the capacity to reduce mevalonate formation. That will enhance endothelial function, inhibit vascular smooth muscle cell proliferation and migration and encourage macrophages to promote plaque stability and regression while reducing inflammation. Taking these factors into consideration, we did an extensive analysis of the relevant literature, comparing the effects of Mg2 and statin medications on lipoproteins and, implicitly, on the key enzymes involved in cholesterol metabolism.
Collapse
Affiliation(s)
- Roxana Nartea
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute for Rehabilitation, Physical Medicine and Balneoclimatology, 030079 Bucharest, Romania
| | - Brindusa Ilinca Mitoiu
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Agrippa Ionescu Clinical Emergency Hospital, 077016 Bucharest, Romania
| | - Ioana Ghiorghiu
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute for Rehabilitation, Physical Medicine and Balneoclimatology, 030079 Bucharest, Romania
| |
Collapse
|
8
|
Qi Q, Chen L, Sun H, Zhang N, Zhou J, Zhang Y, Zhang X, Li L, Li D, Wang L. Low-density lipoprotein receptor deficiency reduced bone mass in mice via the c-fos/NFATc1 pathway. Life Sci 2022; 310:121073. [DOI: 10.1016/j.lfs.2022.121073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
|
9
|
Ge YW, Fan ZH, Ke QF, Guo YP, Zhang CQ, Jia WT. SrFe12O19-doped nano-layered double hydroxide/chitosan layered scaffolds with a nacre-mimetic architecture guide in situ bone ingrowth and regulate bone homeostasis. Mater Today Bio 2022; 16:100362. [PMID: 35937572 PMCID: PMC9352545 DOI: 10.1016/j.mtbio.2022.100362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 07/09/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoporotic bone defects result from an imbalance in bone homeostasis, excessive osteoclast activity, and the weakening of osteogenic mineralization, resulting in impaired bone regeneration. Herein, inspired by the hierarchical structures of mollusk nacre, nacre exhibits outstanding high-strength mechanical properties, which are in part due to its delicate layered structure. SrFe12O19 nanoparticles and nano-layered double hydroxide (LDH) were incorporated into a bioactive chitosan (CS) matrix to form multifunctional layered nano-SrFe12O19-LDH/CS scaffolds. The compressive stress value of the internal ordered layer structure matches the trabecular bone (0.18 MPa). The as-released Mg2+ ions from the nano-LDH can inhibit bone resorption in osteoclasts by inhibiting the NFκB signaling pathway. At the same time, the as-released Sr2+ ions promote the high expression of osteoblast collagen 1 proteins and accelerate bone mineralization by activating the BMP-2/SMAD signaling pathway. In vivo, the Mg2+ ions released from the SrFe12O19-LDH/CS scaffolds inhibited the release of pro-inflammatory factors (IL-1β and TNF-α), while the as-released Sr2+ ions promoted osteoblastic proliferation and the mineralization of osteoblasts inside the layered SrFe12O19-LDH/CS scaffolds. Immunofluorescence for OPG, RANKL, and CD31, showed that stable vasculature could be formed inside the layered SrFe12O19-LDH/CS scaffolds. Hence, this study on multifunctional SrFe12O19-LDH/CS scaffolds clarifies the regulatory mechanism of osteoporotic bone regeneration and is expected to provide a theoretical basis for the research, development, and clinical application of this scaffold on osteoporotic bone defects. 1, SrFe12O19 nanoparticles and LDH were incorporated into a bioactive CS matrix. 2, SrFe12O19-LDH/CS scaffolds were prepared as a layered scaffold to increase mechanical strength. 3, The slow release of Mg2+ and Sr2+ could maintain bone homeostasis. 4, The scaffolds also promote the formation of new blood vessels.
Collapse
|
10
|
Li X, Dai B, Guo J, Zhu Y, Xu J, Xu S, Yao Z, Chang L, Li Y, He X, Chow DHK, Zhang S, Yao H, Tong W, Ngai T, Qin L. Biosynthesized Bandages Carrying Magnesium Oxide Nanoparticles Induce Cortical Bone Formation by Modulating Endogenous Periosteal Cells. ACS NANO 2022; 16:18071-18089. [PMID: 36108267 DOI: 10.1021/acsnano.2c04747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bone grafting is frequently conducted to treat bone defects caused by trauma and tumor removal, yet with significant medical and socioeconomic burdens. Space-occupying bone substitutes remain challenging in the control of osteointegration, and meanwhile activation of endogenous periosteal cells by using non-space-occupying implants to promote new bone formation becomes another therapeutic strategy. Here, we fabricated a magnesium-based artificial bandage with optimal micropatterns for activating periosteum-associated biomineralization. Collagen was self-assembled on the surface of magnesium oxide nanoparticles embedded electrospun fibrous membranes as a hierarchical bandage structure to facilitate the integration with periosteum in situ. After the implantation on the surface of cortical bone in vivo, magnesium ions were released to generate a pro-osteogenic immune microenvironment by activating the endogenous periosteal macrophages into M2 phenotype and, meanwhile, promote blood vessel formation and neurite outgrowth. In a cortical bone defect model, magnesium-based artificial bandage guided the surrounding newly formed bone tissue to cover the defected area. Taken together, our study suggests that the strategy of stimulating bone formation can be achieved with magnesium delivery to periosteum in situ and the proposed periosteal bandages act as a bioactive media for accelerating bone healing.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Zhi Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shian Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| |
Collapse
|
11
|
Chen S, Luo S, Zou B, Xie J, Li J, Zeng Y. Magnesium Supplementation Stimulates Autophagy to Reduce Lipid Accumulation in Hepatocytes via the AMPK/mTOR Pathway. Biol Trace Elem Res 2022; 201:3311-3322. [PMID: 36224316 DOI: 10.1007/s12011-022-03438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Metabolic-associated fatty liver disease (MAFLD) (previously known as nonalcoholic fatty liver disease (NAFLD)) is a disease with high worldwide prevalence, but with limited available therapeutic interventions. Autophagy is a cell survival mechanism for clearing excess lipids in hepatocytes and affects the occurrence and development of MAFLD. In addition, some studies have shown that magnesium deficiency is common in patients with obesity and metabolic syndrome. Magnesium supplementation can effectively improve metabolism-related diseases such as obesity and fatty liver. Our study successfully constructed a cellular model of MAFLD by 1 mM free fatty acid (FFA) intervention in LO2 cells for 24 h, and there was an increase in lipid accumulation in hepatocytes after FFA intervention. Magnesium supplementation was shown to reduce lipid deposition in hepatocytes induced by FFA, and Western blotting (WB) analysis showed that magnesium supplementation could downregulate the expression of Fasn and SREBP1 and increase the expression of LPL, suggesting that magnesium can reduce lipid accumulation by reducing lipid synthesis and increasing lipid oxidation. Magnesium supplementation could affect cellular lipid metabolism by activating the AMPK/mTOR pathway to stimulate autophagy. Our results identified a relationship between magnesium and lipid accumulation in hepatocytes and showed that magnesium supplementation reduced lipid deposition in hepatocytes by activating autophagy by activating the AMPK-mTOR pathway.
Collapse
Affiliation(s)
- Shiyan Chen
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Shunkui Luo
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jianhui Xie
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Yingjuan Zeng
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
12
|
A novel image-based machine learning model with superior accuracy and predictability for knee arthroplasty loosening detection and clinical decision making. J Orthop Translat 2022; 36:177-183. [PMID: 36263380 PMCID: PMC9562957 DOI: 10.1016/j.jot.2022.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Background Loosening is the leading cause of total knee arthroplasty (TKA) revision. This is a heavy burden toward the healthcare system owing to the difficulty in diagnosis and complications occurring from the delay management. Based on automatic analytical model building, machine learning, may potentially help to automatically recognize the risk of loosening based on radiographs alone. The aim of this study was to build an image-based machine-learning model for detecting TKA loosening. Methods Image-based machine-learning model was developed based on ImageNet, Xception model and a TKA patient X-ray image dataset. Based on a dataset with TKA patient clinical parameters, another system was then created for developing the clinical-information-based machine learning model with random forest classifier. In addition, the Xception Model was pre-trained on the ImageNet database with python and TensorFlow deep learning library for the prediction of loosening. Class activation maps were also used to interpret the prediction decision made by model. Two senior orthopaedic specialists were invited to assess loosening from X-ray images for 3 attempts in setting up comparison benchmark. Result In the image-based machine learning loosening model, the precision rate and recall rate were 0.92 and 0.96, respectively. While for the accuracy rate, 96.3% for visualization classification was observed. However, the addition of clinical-information-based model, with precision rate of 0.71 and recall rate of 0.20, did not further showed improvement on the accuracy. Moreover, as class activation maps showed corresponding signals over bone-implant interface that is loosened radiographically, this confirms that the current model utilized a similar image recognition pattern as that of inspection by clinical specialists. Conclusion The image-based machine learning model developed demonstrated high accuracy and predictability of knee arthroplasty loosening. And the class activation heatmap matched well with the radiographic features used clinically to detect loosening, which highlighting its potential role in assisting clinicians in their daily practice. However, addition of clinical-information-based machine-learning model did not offer further improvement in detection. As far as we know, this is the first report of pure image-based machine learning model with high detection accuracy. Importantly, this is also the first model to show relevant class activation heatmap corresponding to loosening location. Translational potential The finding in this study indicated image-based machine learning model can detect knee arthroplasty loosening with high accuracy and predictability, which the class activation heatmap can potentially assist surgeons to identify the sites of loosening.
Collapse
|
13
|
Zhang Z, Zhang Z, Pei L, Zhang X, Li B, Meng Y, Zhou X. How high-fat diet affects bone in mice: A systematic review and meta-analysis. Obes Rev 2022; 23:e13493. [PMID: 35822276 DOI: 10.1111/obr.13493] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022]
Abstract
High-fat diet (HFD) feeding for mice is commonly used to model obesity. However, conflicting results have been reported on the relationship between HFD and bone mass. In this systematic review and meta-analysis, we synthesized data from 80 articles to determine the alterations in cortical and trabecular bone mass of femur, tibia, and vertebrae in C57BL/6 mice after HFD. Overall, we detected decreased trabecular bone mass as well as deteriorated architecture, in femur and tibia of HFD treated mice. The vertebral trabecula was also impaired, possibly due to its reshaping into a more fragmentized pattern. In addition, pooled cortical thickness declined in femur, tibia, and vertebrae. Combined with changes in other cortical parameters, HFD could lead to a larger femoral bone marrow cavity, and a thinner and more fragile cortex. Moreover, we conducted subgroup analyses to explore the influence of mice's sex and age as well as HFD's ingredients and intervention period. Based on our data, male mice or mice aged 6-12 weeks old are relatively susceptible to HFD. HFD with > 50% of energy from fats and intervention time of 10 weeks to 5 months are more likely to induce skeletal alterations. Altogether, these findings supported HFD as an appropriate model for obesity-associated bone loss and can guide future studies.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Zhanrong Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Lei Pei
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaozhou Zhang
- College of Letters & Science, University of California Berkeley, Berkeley, California, USA
| | - Boyuan Li
- Fountain Valley School of Colorado, Colorado Springs, Colorado, USA
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| |
Collapse
|
14
|
Zhu Y, Zhou J, Dai B, Liu W, Wang J, Li Q, Wang J, Zhao L, Ngai T. A Bilayer Membrane Doped with Struvite Nanowires for Guided Bone Regeneration. Adv Healthc Mater 2022; 11:e2201679. [PMID: 36026579 DOI: 10.1002/adhm.202201679] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Indexed: 01/27/2023]
Abstract
Guided bone regeneration (GBR) therapy demonstrates a prominent curative effect on the management of craniomaxillofacial (CMF) bone defects. In this study, a GBR membrane consisting of a microporous layer and a struvite-nanowire-doped fibrous layer is constructed via non-solvent induced phase separation, followed by an electrospinning procedure to treat critical-sized calvarial defects. The microporous layer shows selective permeability for excluding the rapid-growing non-osteogenic tissues and potential wound stabilization. The nanowire-like struvite is synthesized as the deliverable therapeutic agent within the fibrous layer to facilitate bone regeneration. Such a membrane displays a well-developed heterogeneous architecture, satisfactory mechanical performance, and long-lasting characteristics. The in vitro biological evaluation reveals that apart from being a strong barrier, the bilayer struvite-laden membrane can actively promote cellular adhesion, proliferation, and osteogenic differentiation. Consequently, the multifunctional struvite-doped membranes are applied to treat 5 mm-sized bilateral calvarial defects in rats, resulting in overall improved healing outcomes compared with the untreated or the struvite-free membrane-treated group, which is characterized by enhanced osteogenesis and significantly increased new bone formation. The encouraging preclinical results reveal the great potential of the bilayer struvite-doped membrane as a clinical GBR device for augmenting large-area CMF bone reconstruction.
Collapse
Affiliation(s)
- Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| | - Jianpeng Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| | - Wei Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| | - Jiangpeng Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| |
Collapse
|
15
|
Kawasaki Disease-like Vasculitis Facilitates Atherosclerosis, and Statin Shows a Significant Antiatherosclerosis and Anti-Inflammatory Effect in a Kawasaki Disease Model Mouse. Biomedicines 2022; 10:biomedicines10081794. [PMID: 35892695 PMCID: PMC9330289 DOI: 10.3390/biomedicines10081794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Kawasaki disease (KD) is an acute form of systemic vasculitis that may promote atherosclerosis in adulthood. This study examined the relationships between KD, atherosclerosis, and the long-term effects of HMG-CoA inhibitors (statins). Candida albicans water-soluble fraction (CAWS) was injected intraperitoneally into 5-week-old male apolipoprotein-E-deficient (Apo E-/-) mice to create KD-like vasculitis. Mice were divided into 4 groups: the control, CAWS, CAWS+statin, and late-statin groups. They were sacrificed at 6 or 10 weeks after injection. Statin was started after CAWS injection in all groups except the late-statin group, which was administered statin internally 6 weeks after injection. Lipid plaque lesions on the aorta were evaluated with Oil Red O. The aortic root and abdominal aorta were evaluated with hematoxylin and eosin staining and immunostaining. CAWS vasculitis significantly enhanced aortic atherosclerosis and inflammatory cell invasion into the aortic root and abdominal aorta. Statins significantly inhibited atherosclerosis and inflammatory cell invasion, including macrophages. CAWS vasculitis, a KD-like vasculitis, promoted atherosclerosis in Apo E-/- mice. The long-term oral administration of statin significantly suppressed not only atherosclerosis but also inflammatory cell infiltration. Therefore, statin treatment may be used for the secondary prevention of cardiovascular events during the chronic phase of KD.
Collapse
|
16
|
Wang K, Xu X, Wei Q, Yang Q, Zhao J, Wang Y, Li X, Ji K, Song S. Application of fucoidan as treatment for cardiovascular and cerebrovascular diseases. Ther Adv Chronic Dis 2022; 13:20406223221076891. [PMID: 35432845 PMCID: PMC9008857 DOI: 10.1177/20406223221076891] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Fucoidan is a marine polysaccharide. In recent years, fucoidan has attracted wide-scale attention from the pharmaceutical industries due to its diverse biological activities such as lipid-lowering, anti-atherosclerosis, and anticoagulation. This review clarifies the pharmacological effects of fucoidan in the treatment of human cardiovascular and cerebrovascular diseases. Fucoidan exerts a hypolipidemic effect by increasing the reverse transport of cholesterol, inhibiting lipid synthesis, reducing lipid accumulation, and increasing lipid metabolism. Inflammation, anti-oxidation, and so on have a regulatory effect in the process of atherosclerosis endothelial cells, macrophages, smooth muscle cells, and so on; fucoidan can not only prevent thrombosis through anticoagulation and regulate platelet activation, but also promote the dissolution of formed thrombi. Fucoidan has a neuroprotective effect, and also has a positive effect on the prognosis of the cardiovascular and cerebrovascular. The prospects of applying fucoidan in cardio-cerebrovascular diseases are reviewed to provide some theoretical bases and inspirations for its full-scale development and utilization.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University, Weihai,
ChinaHeping Hospital Affiliated to Changzhi Medical College, Changzhi,
China
| | - Xueli Xu
- Binzhou Inspection and Testing Center, Binzhou,
China
| | - Qiang Wei
- Marine College, Shandong University, Weihai,
China
| | - Qiong Yang
- Marine College, Shandong University, Weihai,
China
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai,
China
| | - Yuan Wang
- Marine College, Shandong University, Weihai,
China
| | - Xia Li
- Marine College, Shandong University, Weihai,
China
| | - Kai Ji
- Department of Plastic Surgery, China-Japan
Friendship Hospital, Beijing 100029, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai
264209, China
| |
Collapse
|
17
|
Liu XY, Jin C, Zhou Y. High Prevalence of Abnormal Carcinoembryonic Antigen in Diabetic Inpatients with Poor Glycemic Control. Diabetes Metab Syndr Obes 2022; 15:2345-2352. [PMID: 35958874 PMCID: PMC9359407 DOI: 10.2147/dmso.s376024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Higher serum carcinoembryonic antigen (CEA) was found in diabetic patients rather than controls. However, the prevalence of abnormal CEA among diabetic inpatients with a large proportion of poor glycemic control is unclear. METHODS A total of 385 diabetic inpatients were included in this study. We collected information from a large clinical database. Patients with malignant tumors were excluded by examination and follow-up. RESULTS We found a surprisingly high prevalence (14.3%) of diabetic inpatients with CEA above normal. The proportion of patients with abnormal CEA was significantly different in subgroups with different blood glucose levels, 20.4% in the HbA1c ≥ 9% group, and 8.5% in the HbA1c < 9%, p = 0.000. We found that the CEA levels were correlated with age, body mass index and HbA1c. The regression coefficient of HbA1c was the highest, B = 0.284, p = 0.000. We also found that the CEA levels were higher in diabetic inpatients with BMI < 24 kg/m2 than the overweight or obesity patients. There was a significant difference in the insulin level and C peptide level between the elevated CEA group and the non-elevated CEA group. CONCLUSION The elevation of CEA is common in diabetic inpatients, especially those with poor hyperglycemia controlled (HbA1c ≥ 9%). The underlying mechanism may be related to glucose toxicity.
Collapse
Affiliation(s)
- Xi-Yu Liu
- Department of Endocrinology, Dongyang People’s Hospital, Dongyang, Zhejiang, People’s Republic of China
- Correspondence: Xi-Yu Liu, Email
| | - Chai Jin
- Department of Endocrinology, Dongyang People’s Hospital, Dongyang, Zhejiang, People’s Republic of China
| | - Yan Zhou
- Department of Endocrinology, Dongyang People’s Hospital, Dongyang, Zhejiang, People’s Republic of China
| |
Collapse
|
18
|
Liu XY. The High Prevalence of Short-Term Elevation of Tumor Markers Due to Hyperglycemia in Diabetic Patients. Diabetes Metab Syndr Obes 2022; 15:1113-1122. [PMID: 35431565 PMCID: PMC9012301 DOI: 10.2147/dmso.s350599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The relationship between diabetes and cancer is uncertain. However, tumor markers in diabetic patients are significantly elevated. The prevalence of diabetic inpatients with elevation of tumor markers and its relationship to blood glucose is needed to be studied. METHODS A total of 102 diabetic inpatients were included in this study. We collected information from diabetic inpatients and tested tumor markers. Patients with elevation of tumor markers were rechecked. RESULTS We found that up to 73.3% of diabetic inpatients had one or more tumor markers elevated. The proportion of diabetic inpatients with higher than normal cytokeratin 19 fragment (CYFRA 21-1) was 54.5%. Most of them did not return to normal after controlling the blood glucose. A short-term elevation of carcinoembryonic antigen (CEA) was present in 15.8% of diabetic inpatients, and 19.8% of diabetic inpatients had a short-term elevation of carbohydrate antigen. CEA and carbohydrate antigen including CA19-9, CA72-4, CA125 and CA15-3 returned to normal or became significantly reduced within 2 weeks after good control of blood glucose. CONCLUSION Our study showed that the elevation of tumor markers was common in diabetic inpatients, especially those with poor blood glucose control. It indicated that re-checking the tumor markers after controlling blood glucose might be better than conducting large-scale test for cancer.
Collapse
Affiliation(s)
- Xi-yu Liu
- Department of Endocrinology, Dongyang People’s Hospital, Dongyang, Zhejiang, People’s Republic of China
- Correspondence: Xi-yu Liu, Email
| |
Collapse
|
19
|
Nirwan N, Vohora D. Linagliptin in Combination With Metformin Ameliorates Diabetic Osteoporosis Through Modulating BMP-2 and Sclerostin in the High-Fat Diet Fed C57BL/6 Mice. Front Endocrinol (Lausanne) 2022; 13:944323. [PMID: 35928902 PMCID: PMC9343600 DOI: 10.3389/fendo.2022.944323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diabetic osteoporosis is a poorly managed serious skeletal complication, characterized by high fracture risk, increased bone resorption, reduced bone formation, and disrupted bone architecture. There is a need to investigate drugs that can improve bone health along with managing glycemic control. DPP-4 inhibitors and metformin have proven benefits in improving bone health. Here, we investigated the effects of linagliptin, a DPP inhibitor, and metformin alone and in combination to treat diabetic osteoporosis in high-fat-fed mice. METHODS C57BL/6 mice were kept on the high-fat diet (HFD) for 22 weeks to induce diabetic osteoporosis. Linagliptin (10mg/Kg), metformin (150mg/Kg), and their combination were orally administered to the diabetic mice from the 18th-22nd week. Femur and tibial bone microarchitecture together with bone mineral density (BMD) were evaluated using µCT and histopathological changes were assessed. Further, bone turnover biomarkers namely bone morphogenetic protein-2 (BMP-2), sclerostin, tartrate-resistant acid phosphatase (TRAP), osteocalcin, alkaline phosphatase (ALP), calcium, and pro-inflammatory cytokines were assessed. Additionally, metabolic parameters including body weight, fasting blood glucose (FBG), glucose & insulin tolerance, lipids profile, and leptin were measured. RESULTS HFD feeding resulted in impaired bone microarchitecture, reduced BMD, distorted bone histology, and altered bone turnover biomarkers as indicated by the significant reduction in bone ALP, BMP-2, osteocalcin, and an increase in sclerostin, TRAP, and serum calcium. Interestingly, treatment with linagliptin and its combination with metformin significantly reverted the impaired bone architecture, BMD, and positively modulated bone turnover biomarkers, while metformin alone did not exhibit any significant improvement. Further, HFD induced diabetes and metabolic abnormalities (including an increase in body weight, FBG, impaired glucose and insulin tolerance, leptin, triglycerides, cholesterol), and pro-inflammatory cytokines (TNF-alpha and IL-1β) were successfully reversed by treatment with linagliptin, metformin, and their combination. CONCLUSION Linagliptin and its combination with metformin successfully ameliorated diabetic osteoporosis in HFD-fed mice possibly through modulation of BMP-2 and sclerostin. The study provides the first evidence for the possible use of linagliptin and metformin combination for managing diabetic osteoporosis.
Collapse
|
20
|
Jiang Y, Tan S, Hu J, Chen X, Chen F, Yao Q, Zhou Z, Wang X, Zhou Z, Fan Y, Liu J, Lin Y, Liu L, He S. Amorphous calcium magnesium phosphate nanocomposites with superior osteogenic activity for bone regeneration. Regen Biomater 2021; 8:rbab068. [PMID: 34917396 PMCID: PMC8670301 DOI: 10.1093/rb/rbab068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
The seek of bioactive materials for promoting bone regeneration is a challenging and long-term task. Functionalization with inorganic metal ions or drug molecules is considered effective strategies to improve the bioactivity of various existing biomaterials. Herein, amorphous calcium magnesium phosphate (ACMP) nanoparticles and simvastatin (SIM)-loaded ACMP (ACMP/SIM) nanocomposites were developed via a simple co-precipitation strategy. The physiochemical property of ACMP/SIM was explored using transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD) and high-performance liquid chromatograph (HPLC), and the role of Mg2+ in the formation of ACMP/SIM was revealed using X-ray absorption near-edge structure (XANES). After that, the transformation process of ACMP/SIM in simulated body fluid (SBF) was also tracked to simulate and explore the in vivo mineralization performance of materials. We find that ACMP/SIM releases ions of Ca2+, Mg2+ and PO43−, when it is immersed in SBF at 37°C, and a phase transformation occurred during which the initially amorphous ACMP turns into self-assembled hydroxyapatite (HAP). Furthermore, ACMP/SIM displays high cytocompatibility and promotes the proliferation and osteogenic differentiation of MC3T3-E1 cells. For the in vivo studies, lamellar ACMP/SIM/Collagen scaffolds with aligned pore structures were prepared and used to repair a rat defect model in calvaria. ACMP/SIM/Collagen scaffolds show a positive effect in promoting the regeneration of calvaria defect after 12 weeks. The bioactive ACMP/SIM nanocomposites are promising as bone repair materials. Considering the facile preparation process and superior in vitro/vivo bioactivity, the as-prepared ACMP/SIM would be a potential candidate for bone related biomedical applications.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Shuo Tan
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jianping Hu
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xin Chen
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Feng Chen
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,National Engineering Research Center for Nanotechnology, Shanghai 200241, China
| | - Qianting Yao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhi Zhou
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiansong Wang
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zifei Zhou
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yunshan Fan
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Junjian Liu
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yize Lin
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lijia Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Shisheng He
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
21
|
Xu J, Hu P, Zhang X, Chen J, Wang J, Zhang J, Chen Z, Yu MK, Chung YW, Wang Y, Zhang X, Zhang Y, Zheng N, Yao H, Yue J, Chan HC, Qin L, Ruan YC. Magnesium implantation or supplementation ameliorates bone disorder in CFTR-mutant mice through an ATF4-dependent Wnt/β-catenin signaling. Bioact Mater 2021; 8:95-108. [PMID: 34541389 PMCID: PMC8424424 DOI: 10.1016/j.bioactmat.2021.06.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
Magnesium metal and its alloys are being developed as effective orthopedic implants; however, the mechanisms underlying the actions of magnesium on bones remain unclear. Cystic fibrosis, the most common genetic disease in Caucasians caused by the mutation of CFTR, has shown bone disorder as a key clinical manifestation, which currently lacks effective therapeutic options. Here we report that implantation of magnesium-containing implant stimulates bone formation and improves bone fracture healing in CFTR-mutant mice. Wnt/β-catenin signaling in the bone is enhanced by the magnesium implant, and inhibition of Wnt/β-catenin by iCRT14 blocks the magnesium implant to improve fracture healing in CFTR-mutant mice. We further demonstrate that magnesium ion enters osteocytes, increases intracellular cAMP level and activates ATF4, a key transcription factor known to regulate Wnt/β-catenin signaling. In vivo knockdown of ATF4 abolishes the magnesium implant-activated β-catenin in bones and reverses the improved-fracture healing in CFTR-mutant mice. In addition, oral supplementation of magnesium activates ATF4 and β-catenin as well as enhances bone volume and density in CFTR-mutant mice. Together, these results show that magnesium implantation or supplementation may serve as a potential anabolic therapy for cystic fibrosis-related bone disease. Activation of ATF4-dependent Wnt/β-catenin signaling in osteocytes is identified as a previously undefined mechanism underlying the beneficial effect of magnesium on bone formation. Magnesium implant ameliorates bone defects and improves the impaired bone fracture healing in CFTR-deficient mice. Oral magnesium supplementation improves bone quality in CFTR-deficient mice. Extracellular Mg2+ enters bone cells through Mg2+ channels and transporters. Mg2+ elevates cAMP level to activate ATF4-dependent Wnt/β-catenin signalingin bone cells.
Collapse
Affiliation(s)
- Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Peijie Hu
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaotian Zhang
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Junjiang Chen
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.,Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiali Wang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jieting Zhang
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mei Kuen Yu
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.,Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiu Wa Chung
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Wang
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaohu Zhang
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yifeng Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Nianye Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Yue
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Chun Ruan
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
22
|
The Development of Light-Curable Calcium-Silicate-Containing Composites Used in Odontogenic Regeneration. Polymers (Basel) 2021; 13:polym13183107. [PMID: 34578012 PMCID: PMC8468725 DOI: 10.3390/polym13183107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Pulp regeneration is one of the most successful areas in the field of tissue regeneration, despite its current limitations. The biocompatibility of endodontic biomaterials is essential in securing the oral microenvironment and supporting pulp tissue regeneration. Therefore, the objective of this study was to investigate the new light-curable calcium silicate (CS)-containing polyethylene glycol diacrylate (PEGDA) biocomposites’ regulation of human dental pulp stem cells (hDPSCs) in odontogenic-related regeneration. The CS-containing PEGDA (0 to 30 wt%) biocomposites are applied to endodontics materials to promote their mechanical, bioactive, and biological properties. Firstly, X-ray diffraction and Fourier-transform infrared spectroscopy showed that the incorporation of CS increased the number of covalent bonds in the PEGDA. The diameter tension strength of the CS-containing PEGDA composite was significantly higher than that of normal PEGDA, and a different microstructure was detected on the surface. Samples were analyzed for their surface characteristics and Ca/Si ion-release profiles after soaking in simulated body fluid for different periods of time. The CS30 group presented better hDPSC adhesion and proliferation in comparison with CS0. Higher values of odontogenic-related biomarkers were found in hDPSCs on CS30. Altogether, these results prove the potential of light-curable CS-containing PEGDA composites as part of a ‘point-of-care’ strategy for application in odontogenesis-related regeneration.
Collapse
|
23
|
Liu X, Ma Y, Chen M, Ji J, Zhu Y, Zhu Q, Guo M, Zhang P. Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration. J Mater Chem B 2021; 9:6691-6702. [PMID: 34382634 DOI: 10.1039/d1tb01080h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hydroxyapatite (HA) is the most commonly used orthopedic implant material. In recent years, the emergence of cationic doped hydroxyapatite has revealed more possibilities for the biological application of HA. Conventional HA does not promote new bone formation because of its poor osteoinductive activity, and has a similar density to that of bone, leading to difficulty in distinguishing both via imaging. Magnesium ions are useful for regulating the cellular behavior and promoting bone regeneration. Ba ion related compounds, such as BaSO4, have a strong X-ray shielding effect. In this study, Ba/Mg@HA was synthesized to prepare Ba/Mg@HA/PLGA composites, and we aimed to investigate if Ba/Mg@HA/PLGA composites enhanced bone repair on osteoblasts and tibial defects, as well as the X-ray and CT imaging ability of bone implants in rats. The in vitro experimental results showed that the Ba/Mg@HA/PLGA composites significantly improved the attachment and osteogenic differentiation of MC3T3-E1 cells. These include the promotion of mineral deposition, enhancement of alkaline phosphatase activity, upregulation of OCN and COL-1 gene expression, and increase in COL-1 and OCN protein expression in a time- and concentration-dependent manner. The in vivo experimental results showed that the Ba/Mg@HA/PLGA composites significantly increased the rate of bone defect healing and the expression of BMP-2 and COL-1 in the bones of rats. X-ray and CT imaging results showed that the Ba/Mg@HA/PLGA composites enhanced the X-ray imaging ability. These findings indicate that the Ba/Mg@HA/PLGA composites can effectively promote bone formation and improve the X-ray and CT imaging abilities to a certain extent.
Collapse
Affiliation(s)
- Xiangji Liu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun 130033, Jilin, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|