1
|
Yu F, Zhao X, Wang Q, Niu Y, Xiao P, Zhang J, Fei K, Huang Y, Liu L, Fang PH, Du X, Li W, He D, Zhang T, Li S, Yuan J. Photothermal-Responsive Soluble Microneedle Patches for Meibomian Gland Dysfunction Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413962. [PMID: 39887671 DOI: 10.1002/advs.202413962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/12/2025] [Indexed: 02/01/2025]
Abstract
Meibomian gland dysfunction (MGD) is a leading cause of evaporative dry eye disease, presenting a challenge for targeted treatment. Traditional topical ocular drug delivery methods often fail to effectively reach the meibomian glands (MGs). To address this, the study has developed a soluble microneedles (MN) patch comprising poly(vinyl alcohol), cyclodextrin modified polyacrylic acid, and new indocyanine green. This innovative MN patch facilitates the transdermal release of peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, such as rosiglitazone in response to near-infrared ray induced temperature changes. By safely optimizing temperature, the patch effectively liquefied meibum lips, thereby alleviating duct obstruction while releasing the drug. MN patches exhibit sufficient mechanical strength for effective skin penetration, and its biosafety for eyelid application has been rigorously assessed in vitro and in vivo. The therapeutic efficiency of rosiglitazone loaded MN (ROSI-MN) treatment for MGD is evaluated in high-fat mice. After three months of treatments, ROSI-MN administration significantly alleviated MGD clinical manifestations, including ocular surface damage, lipid deposits, glandular hypertrophy, and inflammatory infiltration, ultimately improving the microstructure and biofunction of MGs. In conclusion, the soluble MN patches hold promise as an effective drug delivery strategy for treating ocular surface diseases beyond MGD.
Collapse
Affiliation(s)
- Fei Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
- Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510020, China
| | - Xuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Qian Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yifei Niu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Jinze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Keyi Fei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Yuancong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Liu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Po-Han Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Xinyue Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Tingting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Jin Yuan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing, 100730, China
| |
Collapse
|
2
|
Chetty K, Peters XQ, Omolo CA, Ismail EA, Gafar MA, Elhassan E, Kassam SZF, Govender J, Dlamini S, Govender T. Multifunctional Dual Enzyme-Responsive Nanostructured Lipid Carriers for Targeting and Enhancing the Treatment of Bacterial Infections. ACS APPLIED BIO MATERIALS 2025; 8:548-569. [PMID: 39714140 DOI: 10.1021/acsabm.4c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Bacterial infections pose an increasingly worrisome threat to the health of humankind, with antibiotic resistance contributing significantly to this burden. With current conventional antibiotics perpetuating the problem, and a paucity in developing antibiotics, drug delivery systems incorporating nanotechnology appear promising. As such, a dual enzyme-responsive multifunctional nanostructured lipid carrier (NLC) incorporating farnesol (FAN) and triglycerol monostearate (TGMS), was conceptualized for the codelivery of vancomycin (VCM) and antimicrobial peptide (AMP) to enhance the antibacterial activity of VCM. In silico studies and Microscale Thermophoresis demonstrated the strong binding relationships between the NLC constituents and two enzymes that exist in higher concentrations during host infection, namely lipase and a matrix metalloproteinase (MMP). The formulated nanosystem, VCM-AMP-TF-NLCs, had a particle size, polydispersity index, zeta potential, and entrapment efficiency of 149.00 ± 2.97 nm, 0.07 ± 0.01, -5.51 ± 1.21 mV, and 86.20% ± 1.47%, respectively. The NLCs, which showed stability, and biocompatibility, also demonstrated lipase- and MMP-responsiveness. The in vitro antibacterial studies revealed 2-fold and 8-fold reductions in the minimum inhibitory concentration for the NLCs compared to bare VCM, against methicillin-resistant Staphylococcal aureus (MRSA) and Escherichia coli, respectively. Furthermore, in vivo studies revealed that tissues treated with the VCM-AMP-TF-NLCs displayed significantly reduced bacterial burdens (up to 8.73-fold) and less histopathological cellular injury, edema, and necrosis compared to the tissues treated with bare VCM alone. The results support the superiority of the VCM-AMP-TF-NLCs as a multifunctional dual enzyme-responsive NLC compared to bare VCM.
Collapse
Affiliation(s)
- Kerisha Chetty
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
- Department of Pharmaceutics, School of Pharmacy and Health Sciences, United States International University-Africa, P.O. Box 14634, Nairobi 00800, Kenya
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Sania Z F Kassam
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Jasoda Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Sbongumusa Dlamini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| |
Collapse
|
3
|
Dong L, Fan Z, Fang B, Zhao X, Yao H, Cai G, Yang S, Zhang G, Cheng X, Feng Y, Mi S, Sun W. Oriented cellulose hydrogel: Directed tissue regeneration for reducing corneal leukoplakia and managing fungal corneal ulcers. Bioact Mater 2024; 41:15-29. [PMID: 39101028 PMCID: PMC11292264 DOI: 10.1016/j.bioactmat.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Fungal corneal ulcer is one of the leading causes of corneal blindness in developing countries. Corneal scars such as leukoplakia are formed due to inflammation, oxidative stress and non-directed repair, which seriously affect the patients' subsequent visual and life quality. In this study, drawing inspiration from the oriented structure of collagen fibers within the corneal stroma, we first proposed the directional arrangement of CuTA-CMHT hydrogel system at micro and macro scales based on the 3D printing extrusion method combined with secondary patterning. It played an antifungal role and induced oriented repair in therapy of fungal corneal ulcer. The results showed that it effectively inhibited Candida albicans, Aspergillus Niger, Fusarium sapropelum, which mainly affects TNF, NF-kappa B, and HIF-1 signaling pathways, achieving effective antifungal functions. More importantly, the fibroblasts interacted with extracellular matrix (ECM) of corneal stroma through formation of focal adhesions, promoted the proliferation and directional migration of cells in vitro, induced the directional alignment of collagen fibers and corneal stromal orthogonally oriented repair in vivo. This process is mainly associated with MYLK, MYL9, and ITGA3 molecules. Furthermore, the downregulation the growth factors TGF-β and PDGF-β inhibits myofibroblast development and reduces scar-type ECM production, thereby reducing corneal leukoplakia. It also activates the PI3K-AKT signaling pathway, promoting corneal healing. In conclusion, the oriented CuTA-CMHT hydrogel system mimics the orthogonal arrangement of collagen fibers, inhibits inflammation, eliminates reactive oxygen species, and reduces corneal leukoplakia, which is of great significance in the treatment of fungal corneal ulcer and is expected to write a new chapter in corneal tissue engineering.
Collapse
Affiliation(s)
- Lina Dong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Department of Burns, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Zixin Fan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, 518040, China
| | - Bixing Fang
- Department of Otolaryngology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaoyu Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hongyi Yao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Gangpei Cai
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuo Yang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, 518040, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, 518040, China
| | - Xiaoqi Cheng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China
| | - Shengli Mi
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wei Sun
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Zhuang Y, Du X, Yang L, Jiang Z, Yu B, Gu W, Cui W, Lu H. Drop to Gate Nasal Drops Attenuates Sepsis-Induced Cognitive Dysfunction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403564. [PMID: 38966875 DOI: 10.1002/smll.202403564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Nasal administration can bypass the blood-brain barrier and directly deliver drugs to the brain, providing a non-invasive route for central nervous system (CNS) diseases. Inspired by the appearance that a gate can block the outside world and the characteristics of the sol-gel transition can form a "gate" in the nasal cavity, a Drop to Gate nasal drop (DGND) is designed to set a gate in nose, which achieves protecting role from the influence of nasal environment. The DGND demonstrates the efficiency and application prospect of delivering drugs to the brain through the N-to-B. The effective concentration of single administration is increased through the hydrophobic interaction between C8-GelMA and SRT1720 (SA), and then cross-linked under UV to form nanogel, which can respond to MMP in the inflammatory microenvironment of sepsis-induced cognitive dysfunction. Finally, the SA/nanogel is compounded into the thermogel, which can respond to the nasal cavity temperature to form DGND in situ, increasing the residence time and delivery efficiency of drugs in the nasal cavity. In vitro, the DGND alleviates lipopolysaccharides (LPS)-induced BV2 inflammation. In vivo, DGND effectively targets the nasal mucosa and deliver drugs to the brain, which activate Sirt1 to alleviate inflammation mediated by microglia and improve cognitive dysfunction in sepsis mice.
Collapse
Affiliation(s)
- Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| | - Xiyu Du
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No. 221 Yan'an West Road, Jing'an, Shanghai, 200040, P. R. China
| | - Li Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| | - Zhaoshun Jiang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No. 221 Yan'an West Road, Jing'an, Shanghai, 200040, P. R. China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| | - Weidong Gu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No. 221 Yan'an West Road, Jing'an, Shanghai, 200040, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| |
Collapse
|
5
|
Roy HS, Murugesan P, Kulkarni C, Arora M, Nagar GK, Guha R, Chattopadhyay N, Ghosh D. On-demand release of a selective MMP-13 blocker from an enzyme-responsive injectable hydrogel protects cartilage from degenerative progression in osteoarthritis. J Mater Chem B 2024; 12:5325-5338. [PMID: 38669084 DOI: 10.1039/d3tb02871b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
In osteoarthritis (OA), the degradation of cartilage is primarily driven by matrix metalloprotease-13 (MMP-13). Hence, the inhibition of MMP-13 has emerged as an attractive target for OA treatment. Among the various approaches that are being explored for MMP-13 regulation, blocking of the enzyme with specific binding molecules appears to be a more promising strategy for preventing cartilage degeneration. To enhance effectiveness and ensure patient compliance, it is preferable for the binding molecule to exhibit sustained activity when administered directly into the joint. Herein, we present an enzyme-responsive hydrogel that was designed to exhibit on-demand, the sustained release of BI-4394, a potent and highly selective MMP-13 blocker. The stable and compatible hydrogel was prepared using triglycerol monostearate. The efficacy of the hydrogel to prevent cartilage damage was assessed in a rat model of OA induced by anterior cruciate ligament transection (ACLT). The results revealed that in comparison to the rats administrated weekly with intra-articular BI-4394, the hydrogel implanted rats had reduced levels of inflammation and bone erosion. In comparison to untreated control, the cartilage in animals administered with BI-4394/hydrogel exhibited significant levels of collagen-2 and aggrecan along with reduced MMP-13. Overall, this study confirmed the potential of BI-4394 delivery using an enzyme-responsive hydrogel as a promising treatment option to treat the early stages of OA by preventing further cartilage degradation.
Collapse
Affiliation(s)
- Himadri Shekhar Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Preethi Murugesan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Chirag Kulkarni
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Malika Arora
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Geet Kumar Nagar
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Rajdeep Guha
- Division of Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| |
Collapse
|
6
|
Cui W, Chen S, Hu T, Zhou T, Qiu C, Jiang L, Cheng X, Ji J, Yao K, Han H. Nanoceria-Mediated Cyclosporin A Delivery for Dry Eye Disease Management through Modulating Immune-Epithelial Crosstalk. ACS NANO 2024; 18:11084-11102. [PMID: 38632691 DOI: 10.1021/acsnano.3c11514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Dry eye disease (DED) affects a substantial worldwide population with increasing frequency. Current single-targeting DED management is severely hindered by the existence of an oxidative stress-inflammation vicious cycle and complicated intercellular crosstalk within the ocular microenvironment. Here, a nanozyme-based eye drop, namely nanoceria loading cyclosporin A (Cs@P/CeO2), is developed, which possesses long-term antioxidative and anti-inflammatory capacities due to its regenerative antioxidative activity and sustained release of cyclosporin A (CsA). In vitro studies showed that the dual-functional Cs@P/CeO2 not only inhibits cellular reactive oxygen species production, sequentially maintaining mitochondrial integrity, but also downregulates inflammatory processes and repolarizes macrophages. Moreover, using flow cytometric and single-cell sequencing data, the in vivo therapeutic effect of Cs@P/CeO2 was systemically demonstrated, which rebalances the immune-epithelial communication in the corneal microenvironment with less inflammatory macrophage polarization, restrained oxidative stress, and enhanced epithelium regeneration. Collectively, our data proved that the antioxidative and anti-inflammatory Cs@P/CeO2 may provide therapeutic insights into DED management.
Collapse
Affiliation(s)
- Wenyu Cui
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Sheng Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| | - Tianyi Hu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Tinglian Zhou
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Chen Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Luyang Jiang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Xiaoyu Cheng
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Haijie Han
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| |
Collapse
|
7
|
Zhao L, Chen J, Bai B, Song G, Zhang J, Yu H, Huang S, Wang Z, Lu G. Topical drug delivery strategies for enhancing drug effectiveness by skin barriers, drug delivery systems and individualized dosing. Front Pharmacol 2024; 14:1333986. [PMID: 38293666 PMCID: PMC10825035 DOI: 10.3389/fphar.2023.1333986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Topical drug delivery is widely used in various diseases because of the advantages of not passing through the gastrointestinal tract, avoiding gastrointestinal irritation and hepatic first-pass effect, and reaching the lesion directly to reduce unnecessary adverse reactions. The skin helps the organism to defend itself against a huge majority of external aggressions and is one of the most important lines of defense of the body. However, the skin's strong barrier ability is also a huge obstacle to the effectiveness of topical medications. Allowing the bioactive, composition in a drug to pass through the stratum corneum barrier as needed to reach the target site is the most essential need for the bioactive, composition to exert its therapeutic effect. The state of the skin barrier, the choice of delivery system for the bioactive, composition, and individualized disease detection and dosing planning influence the effectiveness of topical medications. Nowadays, enhancing transdermal absorption of topically applied drugs is the hottest research area. However, enhancing transdermal absorption of drugs is not the first choice to improve the effectiveness of all drugs. Excessive transdermal absorption enhances topical drug accumulation at non-target sites and the occurrence of adverse reactions. This paper introduces topical drug delivery strategies to improve drug effectiveness from three perspectives: skin barrier, drug delivery system and individualized drug delivery, describes the current status and shortcomings of topical drug research, and provides new directions and ideas for topical drug research.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bai Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guili Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiwei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanghua Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Khan MUA, Stojanović GM, Abdullah MFB, Dolatshahi-Pirouz A, Marei HE, Ashammakhi N, Hasan A. Fundamental properties of smart hydrogels for tissue engineering applications: A review. Int J Biol Macromol 2024; 254:127882. [PMID: 37951446 DOI: 10.1016/j.ijbiomac.2023.127882] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Tissue engineering is an advanced and potential biomedical approach to treat patients suffering from lost or failed an organ or tissue to repair and regenerate damaged tissues that increase life expectancy. The biopolymers have been used to fabricate smart hydrogels to repair damaged tissue as they imitate the extracellular matrix (ECM) with intricate structural and functional characteristics. These hydrogels offer desired and controllable qualities, such as tunable mechanical stiffness and strength, inherent adaptability and biocompatibility, swellability, and biodegradability, all crucial for tissue engineering. Smart hydrogels provide a superior cellular environment for tissue engineering, enabling the generation of cutting-edge synthetic tissues due to their special qualities, such as stimuli sensitivity and reactivity. Numerous review articles have presented the exceptional potential of hydrogels for various biomedical applications, including drug delivery, regenerative medicine, and tissue engineering. Still, it is essential to write a comprehensive review article on smart hydrogels that successfully addresses the essential challenging issues in tissue engineering. Hence, the recent development on smart hydrogel for state-of-the-art tissue engineering conferred progress, highlighting significant challenges and future perspectives. This review discusses recent advances in smart hydrogels fabricated from biological macromolecules and their use for advanced tissue engineering. It also provides critical insight, emphasizing future research directions and progress in tissue engineering.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia; Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
| | | | - Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
9
|
Kim H, Roh H, Kim SH, Lee K, Im M, Oh SJ. Effective protection of photoreceptors using an inflammation-responsive hydrogel to attenuate outer retinal degeneration. NPJ Regen Med 2023; 8:68. [PMID: 38097595 PMCID: PMC10721838 DOI: 10.1038/s41536-023-00342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Retinitis pigmentosa (RP) is an outer retinal degenerative disease that can lead to photoreceptor cell death and profound vision loss. Although effective regulation of intraretinal inflammation can slow down the progression of the disease, an efficient anti-inflammatory treatment strategy is still lacking. This study reports the fabrication of a hyaluronic acid-based inflammation-responsive hydrogel (IRH) and its epigenetic regulation effects on retinal degeneration. The injectable IRH was designed to respond to cathepsin overexpression in an inflammatory environment. The epigenetic drug, the enhancer of zeste homolog 2 (EZH2) inhibitors, was loaded into the hydrogel to attenuate inflammatory factors. On-demand anti-inflammatory effects of microglia cells via the drug-loaded IRH were verified in vitro and in vivo retinal degeneration 10 (rd10) mice model. Therefore, our IRH not only reduced intraretinal inflammation but also protected photoreceptors morphologically and functionally. Our results suggest the IRH reported here can be used to considerably delay vision loss caused by RP.
Collapse
Affiliation(s)
- Hyerim Kim
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Hyeonhee Roh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, 02841, South Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, KIST, Seoul, 02792, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, South Korea.
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, South Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, South Korea.
| | - Seung Ja Oh
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
10
|
Selvam A, Majood M, Chaurasia R, Rupesh, Singh A, Dey T, Agrawal O, Verma YK, Mukherjee M. Injectable organo-hydrogels influenced by click chemistry as a paramount stratagem in the conveyor belt of pharmaceutical revolution. J Mater Chem B 2023; 11:10761-10777. [PMID: 37807713 DOI: 10.1039/d3tb01674a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The field of injectable hydrogels has demonstrated a paramount headway in the myriad of biomedical applications and paved a path toward clinical advancements. The innate superiority of hydrogels emerging from organic constitution has exhibited dominance in overcoming the bottlenecks associated with inorganic-based hydrogels in the biological milieu. Inorganic hydrogels demonstrate various disadvantages, including limited biocompatibility, degradability, a cumbersome synthesis process, high cost, and ecotoxicity. The excellent biocompatibility, eco-friendliness, and manufacturing convenience of organo-hydrogels have demonstrated to be promising in therapizing biomedical complexities with low toxicity and augmented bioavailability. This report manifests the realization of biomimetic organo-hydrogels with the development of bioresponsive and self-healing injectable organo-hydrogels in the emerging pharmaceutical revolution. Furthermore, the influence of click chemistry in this regime as a backbone in the pharmaceutical conveyor belt has been suggested to scale up production. Moreover, we propose an avant-garde design stratagem of developing a hyaluronic acid (HA)-based injectable organo-hydrogel via click chemistry to be realized for its pharmaceutical edge. Ultimately, injectable organo-hydrogels that materialize from academia or industry are required to follow the standard set of rules established by global governing bodies, which has been delineated to comprehend their marketability. Thence, this perspective narrates the development of injectable organo-hydrogels via click chemistry as a prospective elixir to have in the arsenal of pharmaceuticals.
Collapse
Affiliation(s)
- Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Rupesh
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Akanksha Singh
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Tapan Dey
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Yogesh Kumar Verma
- Stem Cell & Tissue Engineering Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, New Delhi, 110054, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
11
|
Liu R, Cui H, Geng X, Shi L, Zhu L, Li Z, Li J. Antibiotic Delivery System for Treating Bacteria-Induced Anterior Blepharitis. ACS Infect Dis 2023; 9:2005-2015. [PMID: 37788827 DOI: 10.1021/acsinfecdis.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The eyelid-related disease of blepharitis remains a tricky ocular disorder and affects patient compliance. However, there is no available and effective treatment, making it extremely challenging. Herein, an antibacterial system based on antibiotic delivery was developed and applied in a blepharitis model induced by bacteria. The antibacterial tests against Staphylococcus aureus both in vitro and in vivo demonstrated that the system shows a favorable bactericidal effect. Then, histological evaluation indicated that the system shows both antibacterial and anti-inflammatory effects. This facile design provided an effective ocular infection management, which displays a promising prospect while addressing other complex ocular disorders.
Collapse
Affiliation(s)
- Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Xingchen Geng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Liuqi Shi
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Lei Zhu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| |
Collapse
|
12
|
Xu Y, Luo Y, Weng Z, Xu H, Zhang W, Li Q, Liu H, Liu L, Wang Y, Liu X, Liao L, Wang X. Microenvironment-Responsive Metal-Phenolic Nanozyme Release Platform with Antibacterial, ROS Scavenging, and Osteogenesis for Periodontitis. ACS NANO 2023; 17:18732-18746. [PMID: 37768714 DOI: 10.1021/acsnano.3c01940] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Periodontitis is a chronic inflammatory disease deriving from dental plaque, characterized by the excessive accumulation of reactive oxygen species (ROS), matrix metalloproteinase (MMP) and other substances, resulting in the destruction of periodontal tissues. At present, the main therapeutic modalities, such as local mechanical debridement and antibiotic delivery, are not only difficult to solve the intractable bacterial biofilm effectively but also tricky to ameliorate the excessive inflammatory response as well as regenerate the impaired periodontal tissues. Herein, we have proposed the TM/BHT/CuTA hydrogel system formed by the self-assembly of the copper-based nanozyme (copper tannic acid coordination nanosheets, CuTA NSs) and the triglycerol monostearate/2,6-di-tert-butyl-4-methylphenol (TM/BHT) hydrogel. The negatively charged TM/BHT/CuTA can retain at the inflammation sites with a positive charge through electrostatic adsorption and hydrolyze in response to the increasing MMP of periodontitis, realizing the on-demand release of the CuTA nanozyme. The released CuTA nanozyme has antibacterial and antiplaque properties. Meanwhile, as a metal-phenolic nanozyme, it can scavenge multiple ROS by simulating the cascade process of superoxide dismutase (SOD) and catalase (CAT). Further, the CuTA nanozyme can modulate the macrophage polarization from M1 phenotype to M2 phenotype through the Nrf2/NF-κB pathway, which reduces the pro-inflammatory cytokines, increases the anti-inflammatory cytokines, and promotes the expression of osteogenetic genes successively, thus relieving the inflammation and accelerating the tissue regeneration of periodontitis. Altogether, this multifunctional nanozyme on-demand release platform (TM/BHT/CuTA) provides a desirable strategy for the treatment of periodontitis.
Collapse
Affiliation(s)
- Yingying Xu
- The Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Yifan Luo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Zhenzhen Weng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Haichang Xu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Qun Li
- The Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Huijie Liu
- The Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Lubing Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Yanmei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Xuexia Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China
| | - Lan Liao
- The Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Medical College, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| |
Collapse
|
13
|
Wang X, Luan F, Yue H, Song C, Wang S, Feng J, Zhang X, Yang W, Li Y, Wei W, Tao Y. Recent advances of smart materials for ocular drug delivery. Adv Drug Deliv Rev 2023; 200:115006. [PMID: 37451500 DOI: 10.1016/j.addr.2023.115006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Owing to the variety and complexity of ocular diseases and the natural ocular barriers, drug therapy for ocular diseases has significant limitations, such as poor drug targeting to the site of the disease, poor drug penetration, and short drug retention time in the vitreous body. With the development of biotechnology, biomedical materials have reached the "smart" stage. To date, despite their inability to overcome all the aforementioned drawbacks, a variety of smart materials have been widely tested to treat various ocular diseases. This review analyses the most recent developments in multiple smart materials (inorganic particles, polymeric particles, lipid-based particles, hydrogels, and devices) to treat common ocular diseases and discusses the future directions and perspectives regarding clinical translation issues. This review can help researchers rationally design more smart materials for specific ocular applications.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Fuxiao Luan
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Cui Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuxin Li
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
14
|
Cai Y, Zhang S, Chen L, Fu Y. Integrated multi-omics and machine learning approach reveals lipid metabolic biomarkers and signaling in age-related meibomian gland dysfunction. Comput Struct Biotechnol J 2023; 21:4215-4227. [PMID: 37675286 PMCID: PMC10480060 DOI: 10.1016/j.csbj.2023.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023] Open
Abstract
Meibomian gland dysfunction (MGD) is a prevalent inflammatory disorder of the ocular surface that significantly impacts patients' vision and quality of life. The underlying mechanism of aging and MGD remains largely uncharacterized. The aim of this work is to investigate lipid metabolic alterations in age-related MGD (ARMGD) through integrated proteomics, lipidomics and machine learning (ML) approach. For this purpose, we collected samples of female mouse meibomian glands (MGs) dissected from eyelids at age two months (n = 9) and two years (n = 9) for proteomic and lipidomic profilings using the liquid chromatography with tandem mass spectrometry (LC-MS/MS) method. To further identify ARMGD-related lipid biomarkers, ML model was established using the least absolute shrinkage and selection operator (LASSO) algorithm. For proteomic profiling, 375 differentially expressed proteins were detected. Functional analyses indicated the leading role of cholesterol biosynthesis in the aging process of MGs. Several proteins were proposed as potential biomarkers, including lanosterol synthase (Lss), 24-dehydrocholesterol reductase (Dhcr24), and farnesyl diphosphate farnesyl transferase 1 (Fdft1). Concomitantly, lipidomic analysis unveiled 47 lipid species that were differentially expressed and clustered into four classes. The most notable age-related alterations involved a decline in cholesteryl esters (ChE) levels and an increase in triradylglycerols (TG) levels, accompanied by significant differences in their lipid unsaturation patterns. Through ML construction, it was confirmed that ChE(26:0), ChE(26:1), and ChE(30:1) represent the most promising diagnostic molecules. The present study identified essential proteins, lipids, and signaling pathways in age-related MGD (ARMGD), providing a reference landscape to facilitate novel strategies for the disease transformation.
Collapse
Affiliation(s)
- Yuchen Cai
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Siyi Zhang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Liangbo Chen
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
15
|
Wang C, Pang Y. Nano-based eye drop: Topical and noninvasive therapy for ocular diseases. Adv Drug Deliv Rev 2023; 194:114721. [PMID: 36773886 DOI: 10.1016/j.addr.2023.114721] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Eye drops are the most accessible therapy for ocular diseases, while inevitably suffering from their lower bioavailability which highly restricts the treatment efficacy. The introduction of nanotechnology has attracted considerable interest as it has advantages over conventional ones such as prolonged ocular surface retention time and enhanced ocular barrier penetrating properties, and achieving higher bioavailability and improved treatment efficacy. This review describes various ocular diseases treated with eye drops as well as the physiological and anatomical ocular barriers faced with through drug administration. It also summarizes the recent advances regarding the utilization of nanotechnology in developing eye drops, and how to optimize the nanocarrier-based ocular drug delivery systems. The prospective future research directions for nano-based eye drops are also discussed here.
Collapse
Affiliation(s)
- Chuhan Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yan Pang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
16
|
Su M, Ruan L, Dong X, Tian S, Lang W, Wu M, Chen Y, Lv Q, Lei L. Current state of knowledge on intelligent-response biological and other macromolecular hydrogels in biomedical engineering: A review. Int J Biol Macromol 2023; 227:472-492. [PMID: 36549612 DOI: 10.1016/j.ijbiomac.2022.12.148] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Because intelligent hydrogels have good biocompatibility, a rapid response, and good degradability as well as a stimulus response mode that is rich, hydrophilic, and similar to the softness and elasticity of living tissue, they have received widespread attention and are widely used in biomedical engineering. In this article, we conduct a systematic review of the use of smart hydrogels in biomedical engineering. First, we introduce the properties and applications of hydrogels and compare the similarities and differences between traditional hydrogels and smart hydrogels. Secondly, we summarize the intelligent hydrogel types, the mechanisms of action used by different hydrogels, and the materials for preparing different types of hydrogels, such as the materials for the preparation of temperature-responsive hydrogels, which mainly include gelatin, carrageenan, agarose, amylose, etc.; summarize the morphologies of different hydrogels, such as films, fibers and microspheres; and summarize the application of smart hydrogels in biomedical engineering, such as for the delivery of proteins, antibiotics, deoxyribonucleic acid, etc. Finally, we summarize the shortcomings of current research and present future prospects for smart hydrogels. The purpose of this paper is to provide researchers engaged in related fields with a systematic review of the application of intelligent hydrogels in biomedical engineering. We hope that they will get some inspiration from this work to provide new directions for the development of related fields.
Collapse
Affiliation(s)
- Mengrong Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Xiaoyu Dong
- Institute of Medicine Nursing, Hubei University of Medicine, Shiyan 442000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Wen Lang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Minhui Wu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China.
| | - Lanjie Lei
- Jiangxi Provincial Key Lab of System Biomedicine, Jiujiang University, Jiujiang 332000, China.
| |
Collapse
|
17
|
Chong-Boon Ong, Mohamad Suffian Mohamad Annuar. Hydrogels Responsive Towards Important Biological-Based Stimuli. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Liu X, Zhou S, Cai B, Wang Y, Deng D, Wang X. An injectable and self-healing hydrogel with antibacterial and angiogenic properties for diabetic wound healing. Biomater Sci 2022; 10:3480-3492. [PMID: 35593179 DOI: 10.1039/d2bm00224h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of diabetic wounds remains a global challenge. Compared with traditional wound dressings, there are higher requirements of antibacterial, anti-inflammatory and pro-angiogenic effects in diabetic wound dressings. Furthermore, it is desirable for dressings to self-adapt to wounds with different morphologies without extra processes and stably (suitable adhesive and self-healing abilities) provide a conducive environment for wound healing. Herein, we construct an injectable and self-healing hydrogel through the combination of chitosan (CS) and metal ions to efficiently improve infected and diabetic wound healing. Benefiting from the amino and hydroxy groups, the CS molecular chains are cross-linked with silver ions (Ag+) and copper ions (Cu2+) to promote the formation of the CS-Ag-Cu hydrogel, which releases Ag+ (an antibacterial agent) and Cu2+ (an angiogenic agent) over a prolonged period. Moreover, the hydrogel possesses appropriate adhesive ability, good water absorption ability, antibacterial capability and biocompatibility according to in vitro investigations. In vivo experimental results further prove that the CS-Ag-Cu hydrogel can dramatically accelerate tissue repair in a Staphylococcus aureus (S. aureus)-infected skin incision model in normal rats and diabetic wounds.
Collapse
Affiliation(s)
- Xuexia Liu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China. .,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China.,College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi, 343009, P.R. China
| | - Sijie Zhou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China
| | - Biying Cai
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China
| | - Yanan Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China.,Affiliated Eye Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Dan Deng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China. .,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China
| | - Xiaolei Wang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China. .,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China
| |
Collapse
|
19
|
Wang H, Zou Z, Wan L, Xue J, Chen C, Yu B, Zhang Z, Yang L, Xie L. Periplocin ameliorates mouse age-related meibomian gland dysfunction through up-regulation of Na/K-ATPase via SRC pathway. Biomed Pharmacother 2022; 146:112487. [PMID: 34883449 DOI: 10.1016/j.biopha.2021.112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Age-related meibomian gland dysfunction (MGD) is the main cause of evaporative dry eye disease in an aging population. Decreased meibocyte cell renewal and lipid synthesis are associated with age-related MGD. Here, we found an obvious decline of Ki67, ΔNp63, and Na+/K+ ATPase expression in aged meibomian glands. Potential Na+/K+ ATPase agonist periplocin, a naturally occurring compound extracted from the traditional herbal medicine cortex periplocae, could promote the proliferation and stem cell activity of meibocyte cells in vitro. Moreover, we observed that periplocin treatment effectively increased the expression of Na+ /K+ ATPase, accompanied with the enhanced expression of Ki67 and ΔNp63 in aged meibomian glands, indicating that periplocin may accelerate meibocyte cell renewal in aged mice. LipidTox staining showed increased lipid accumulation after periplocin treatment in cultured meibomian gland cells and aged meibomian glands. Furthermore, we demonstrated that the SRC pathway was inhibited in aged meibomian glands; however, it was activated by periplocin. Accordingly, the inhibition of the SRC signaling pathway by saracatinib blocked periplocin-induced proliferation and lipid accumulation in meibomian gland cells. In sum, we suggest periplocin-ameliorated meibocyte cell renewal and lipid synthesis in aged meibomian glands via the SRC pathway, which could be a promising candidate for age-related MGD.
Collapse
Affiliation(s)
- Huifeng Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University Qingdao, China
| | - Zongzheng Zou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University Qingdao, China
| | - Luqin Wan
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University Qingdao, China
| | - Junfa Xue
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University Qingdao, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University Qingdao, China
| | - Bingjie Yu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University Qingdao, China
| | - Zhenzhen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University Qingdao, China.
| | - Lixin Xie
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University Qingdao, China.
| |
Collapse
|
20
|
Xing X, Huang H, Gao X, Yang J, Tang Q, Xu X, Wu Y, Li M, Liang C, Tan L, Liao L, Tian W. Local Elimination of Senescent Cells Promotes Bone Defect Repair during Aging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3885-3899. [PMID: 35014784 DOI: 10.1021/acsami.1c22138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to the declined function of bone marrow mesenchymal stem cells (BMSCs), the repair of bone defects in the elderly is retarded. Elimination of senescent cells emerges as a promising strategy for treating age-related diseases. However, whether the local elimination of senescent BMSCs can promote bone regeneration in the elderly remains elusive. To tackle the above issue, we first screened out the specific senolytics for BMSCs and confirmed their effect of eliminating senescent BMSCs in vitro. Treatment with quercetin, which is determined the best senolytics for senescent BMSCs, efficiently removed senescent cells in the population. Moreover, the self-renewal capacity was restored as well as osteogenic ability of BMSCs after treatment. We then designed a microenvironment-responsive hydrogel based on the MMPs secreted by senescent cells. This quercetin-encapsulated hydrogel exhibited a stable microstructure and responsively released quercetin in the presence of senescence in vitro. In vivo, the quercetin-loaded hydrogel effectively cleared the local senescent cells and reduced the secretion of MMPs in the bone. Due to the removal of local senescent cells, the hydrogel significantly accelerated the repair of bone defects in the femur and skull of old rats. Taken together, our study revealed the role of removing senescent cells in bone regeneration and provided a novel therapeutic approach for bone defects in aged individuals.
Collapse
Affiliation(s)
- Xiaotao Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Haisen Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of stomatology, West China School of Public Health & West China Fourth Hospital, Chengdu, Sichuan 610041, China
| | - Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yutao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lin Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|