1
|
Liu WS, Chen Z, Lu ZM, Dong JH, Wu JH, Gao J, Deng D, Li M. Multifunctional hydrogels based on photothermal therapy: A prospective platform for the postoperative management of melanoma. J Control Release 2024; 371:406-428. [PMID: 38849093 DOI: 10.1016/j.jconrel.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Preventing the recurrence of melanoma after surgery and accelerating wound healing are among the most challenging aspects of melanoma management. Photothermal therapy has been widely used to treat tumors and bacterial infections and promote wound healing. Owing to its efficacy and specificity, it may be used for postoperative management of tumors. However, its use is limited by the uncontrollable distribution of photosensitizers and the likelihood of damage to the surrounding normal tissue. Hydrogels provide a moist environment with strong biocompatibility and adhesion for wound healing owing to their highly hydrophilic three-dimensional network structure. In addition, these materials serve as excellent drug carriers for tumor treatment and wound healing. It is possible to combine the advantages of both of these agents through different loading modalities to provide a powerful platform for the prevention of tumor recurrence and wound healing. This review summarizes the design strategies, research progress and mechanism of action of hydrogels used in photothermal therapy and discusses their role in preventing tumor recurrence and accelerating wound healing. These findings provide valuable insights into the postoperative management of melanoma and may guide the development of promising multifunctional hydrogels for photothermal therapy.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Zhuo Chen
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Jin-Hua Dong
- Women and Children Hospital Affiliated to Jiaxing University, 2468 Middle Ring Eastern Road, Jiaxing City, Zhejiang 314000, People's Republic of China
| | - Jin-Hui Wu
- Ophthalmology Department of the Third Affiliated Hospital of Naval Medical University, Shanghai 201805, People's Republic of China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, People's Republic of China.
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China.
| |
Collapse
|
2
|
Zhu W, Zhou Z, Yang M, Chen X, Zhu S, Yu M, Yu Z, Wu W, Liu H. Injectable Nanocomposite Immune Hydrogel Dressings: Prevention of Tumor Recurrence and Anti-Infection after Melanoma Resection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309476. [PMID: 38348999 DOI: 10.1002/smll.202309476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Indexed: 07/13/2024]
Abstract
Complex wound repair due to tumor recurrence and infection following tumor resection presents significant clinical challenges. In this study, a bifunctional nanocomposite immune hydrogel dressing, SerMA-LJC, is developed to address the issues associated with repairing infected damaged tissues and preventing tumor recurrence. Specifically, the immune dressing is composed of methacrylic anhydride-modified sericin (SerMA) and self-assembled nanoparticles (LJC) containing lonidamine (Lon), JQ1, and chlorine e6 (Ce6). In vitro and in vivo experiments demonstrate that the nanocomposite hydrogel dressing can trigger immunogenic cell death (ICD) and has a potent anti-tumor effect. Moreover, this dressing can mitigate the acidic microenvironment of tumor cells and suppress the overexpression of PD-L1 on the tumor cell surface, thereby altering the immunosuppressive tumor microenvironment and augmenting the anti-tumor immune response. Further, the RNA sequencing analysis revealed that the hydrogel dressing significantly impacts pathways associated with positive regulation of immune response, apoptotic process, and other relevant pathways, thus triggering a potent anti-tumor immune response. More importantly, the dressing generates a substantial amount of reactive oxygen species (ROS), which can effectively kill Staphylococcus aureus and promote infectious wound healing. In conclusion, this dual-function nanocomposite immune hydrogel dressing exhibits promise in preventing tumor recurrence and promoting infectious wound healing.
Collapse
Affiliation(s)
- Wenxiang Zhu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha, 410082, China
| | - Mengni Yang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Xin Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Shuai Zhu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Mengyi Yu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, 523058, China
| | - Wenze Wu
- Jingzhou Central Hospital, The Second Clinical Medical College of Yangtze University, Jingzhou, 434020, China
| | - Hairong Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Wang W, Niu Y, Zhang N, Wan Y, Xiao Y, Zhao L, Zhao B, Chen W, Huang D. Cascade-Catalyzed Nanogel for Amplifying Starvation Therapy by Nitric Oxide-Mediated Hypoxia Alleviation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17313-17322. [PMID: 38534029 DOI: 10.1021/acsami.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Glucose oxidase (Gox)-mediated starvation therapy offers a prospective advantage for malignancy treatment by interrupting the glucose supply to neoplastic cells. However, the negative charge of the Gox surface hinders its enrichment in tumor tissues. Furthermore, Gox-mediated starvation therapy infiltrates large amounts of hydrogen peroxide (H2O2) to surround normal tissues and exacerbate intracellular hypoxia. In this study, a cascade-catalyzed nanogel (A-NE) was developed to boost the antitumor effects of starvation therapy by glucose consumption and cascade reactive release of nitric oxide (NO) to relieve hypoxia. First, the surface cross-linking structure of A-NE can serve as a bioimmobilization for Gox, ensuring Gox stability while improving the encapsulation efficiency. Then, Gox-mediated starvation therapy efficiently inhibited the proliferation of tumor cells while generating large amounts of H2O2. In addition, covalent l-arginine (l-Arg) in A-NE consumed H2O2 derived from glucose decomposition to generate NO, which augmented starvation therapy on metastatic tumors by alleviating tumor hypoxia. Eventually, both in vivo and in vitro studies indicated that nanogels remarkably inhibited in situ tumor growth and hindered metastatic tumor recurrence, offering an alternative possibility for clinical intervention.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yafan Niu
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ni Zhang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yuqing Wan
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yiqing Xiao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Lingzhi Zhao
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Liu X, Hu T, Jia Y, Yang S, Yang Y, Cui Z, Wang T, Liang R, Tan C, Wang Y. A MgAl-LDH-CuS nanosheet-based thermo-responsive composite hydrogel with nir-responsive angiogenesis inhibitor releasing capability for multimode starvation therapy. J Nanobiotechnology 2024; 22:127. [PMID: 38520008 PMCID: PMC10960490 DOI: 10.1186/s12951-024-02384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
The rapid proliferation of tumors is highly dependent on the nutrition supply of blood vessels. Cutting off the nutrient supply to tumors is an effective strategy for cancer treatment, known as starvation therapy. Although various hydrogel-based biomaterials have been developed for starvation therapy through glucose consumption or intravascular embolization, the limitations of single-mode starvation therapy hinder their therapeutic effects. Herein, we propose a dual-function nutrition deprivation strategy that can block the nutrients delivery through extravascular gelation shrinkage and inhibit neovascularization through angiogenesis inhibitors based on a novel NIR-responsive nanocomposite hydrogel. CuS nanodots-modified MgAl-LDH nanosheets loaded with angiogenesis inhibitor (sorafenib, SOR) are incorporated into the poly(n-isopropylacrylamide) (PNIPAAm) hydrogel by radical polymerization to obtain the composite hydrogel (SOR@LDH-CuS/P). The SOR@LDH-CuS/P hydrogel can deliver hydrophobic SOR with a NIR-responsive release behavior, which could decrease the tumor vascular density and accelerate cancer cells apoptosis. Moreover, the SOR@LDH-CuS/P hydrogel exhibits higher (3.5 times) compressive strength than that of the PNIPAAm, which could squeeze blood vessels through extravascular gelation shrinkage. In vitro and in vivo assays demonstrate that the interruption of nutrient supply by gelation shrinkage and the prevention of angiogenesis by SOR is a promising strategy to inhibit tumor growth for multimode starvation therapy.
Collapse
Affiliation(s)
- Xueyan Liu
- School of Pharmaceutical Sciences, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, P. R. China
- Laboratory for Clinical Medicine, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, P. R. China
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Yijiang Jia
- School of Pharmaceutical Sciences, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, P. R. China
- Laboratory for Clinical Medicine, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhuolin Cui
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China.
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China.
| | - Yuji Wang
- School of Pharmaceutical Sciences, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, P. R. China.
- Laboratory for Clinical Medicine, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, P. R. China.
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
5
|
Chien MH, Chen CY, Yeh CL, Huang HY, Chou HY, Chen YW, Lin CP. Biofabricated poly (γ-glutamic acid) bio-ink reinforced with calcium silicate exhibiting superior mechanical properties and biocompatibility for bone regeneration. J Dent Sci 2024; 19:479-491. [PMID: 38303841 PMCID: PMC10829714 DOI: 10.1016/j.jds.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/04/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose The modification in 3D hydrogels, tissue engineering, and biomaterials science has enabled us to fabricate novel substitutes for bone regeneration. This study aimed to combine different biomaterials by 3D technique to fabricate a promising all-rounded hydrogel for bone regeneration. Materials and methods In this study, glycidyl methacrylate (GMA)-modified poly γ-glutamic acid (γ-PGA-GMA) hydrogels with calcium silicate (CS) hydrogel of different concentrations were fabricated by a 3D printing technique, and their biocompatibility and capability in bone regeneration were also evaluated. Results The results showed that CS γ-PGA-GMA could be successfully fabricated, and the presence of CS enhanced the rheological and mechanical properties of γ-PGA-GMA hydrogels, thus making them more adept at 3D printing and implantations. SEM images of the surface structure showed that higher CS concentrations (5% and 10%) contributed to denser surface architectures, thus achieving improved cellular adhesion and stem cell proliferation. Furthermore, higher concentrations of CS resulted in elevated expressions of osteogenic-related markers such as alkaline phosphatase (ALP) and osteocalcin (OC), as well as enhanced calcium deposition represented by the increased Alizarin Red S staining. In vivo studies referring to critical defects of rabbit femur further showed that the existence of hydrogels alone was able to induce partial bone regeneration, demonstrated by the results from quantitative and qualitative analysis of micro-CT scans. However, CS alterations caused significant increases in bone regeneration, as indicated by micro-CT and histological staining. Conclusion These results robustly suggest combining different biomaterials is crucial to producing a well-rounded hydrogel for tissue regeneration. We hope this study could be applied as a platform for others to brainstorm potential out-of-the-box solutions, contributing to developing high-potential biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Ming-Hui Chien
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yu Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Liang Yeh
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Huang
- Graduate Institute of Dental Science and Oral Health Industries, China Medical University, Taichung, Taiwan
| | - Han-Yi Chou
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Li X, Wu X. The microspheres/hydrogels scaffolds based on the proteins, nucleic acids, or polysaccharides composite as carriers for tissue repair: A review. Int J Biol Macromol 2023; 253:126611. [PMID: 37652329 DOI: 10.1016/j.ijbiomac.2023.126611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
There are many studies on specific macromolecules and their contributions to tissue repair. Macromolecules have supporting and protective effects in organisms and can help regrow, reshape, and promote self-repair and regeneration of damaged tissues. Macromolecules, such as proteins, nucleic acids, and polysaccharides, can be constructed into hydrogels for the preparation of slow-release drug agents, carriers for cell culture, and platforms for gene delivery. Hydrogels and microspheres are fabricated by chemical crosslinking or mixed co-deposition often used as scaffolds, drug carriers, or cell culture matrix, provide proper mechanical support and nutrient delivery, a well-conditioned environment that to promote the regeneration and repair of damaged tissues. This review provides a comprehensive overview of recent developments in the construction of macromolecules into hydrogels and microspheres based on the proteins, nucleic acids, polysaccharides and other polymer and their application in tissue repair. We then discuss the latest research trends regarding the advantages and disadvantages of these composites in repair tissue. Further, we examine the applications of microspheres/hydrogels in different tissue repairs, such as skin tissue, cartilage, tumor tissue, synovial, nerve tissue, and cardiac repair. The review closes by highlighting the challenges and prospects of microspheres/hydrogels composites.
Collapse
Affiliation(s)
- Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Xinlin Wu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
7
|
Lee B, Park OK, Pan L, Kim K, Kang T, Kim H, Lee N, Choi SH, Hyeon T. Co-Delivery of Metabolic Modulators Leads to Simultaneous Lactate Metabolism Inhibition and Intracellular Acidification for Synergistic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305512. [PMID: 37487702 DOI: 10.1002/adma.202305512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Simultaneous lactate metabolism inhibition and intracellular acidification (LIIA) is a promising approach for inducing tumor regression by depleting ATP. However, given the limited efficacy of individual metabolic modulators, a combination of various modulators is required for highly efficient LIIA. Herein, a co-delivery system that combines lactate transporter inhibitor, glucose oxidase, and O2 -evolving nanoparticles is proposed. As a vehicle, a facile room-temperature synthetic method for large-pore mesoporous silica nanoparticles (L-MSNs) is developed. O2 -evolving nanoparticles are then conjugated onto L-MSNs, followed by immobilizing the lactate transporter inhibitor and glucose oxidase inside the pores of L-MSNs. To load the lactate transporter inhibitor, which is too small to be directly loaded into the large pores, it is encapsulated in albumin by controlling the albumin conformation before being loaded into L-MSNs. Notably, inhibiting lactate efflux shifts the glucose consumption mechanism from lactate metabolism to glucose oxidase reaction, which eliminates glucose and produces acid. This leads to synergistic LIIA and subsequent ATP depletion in cancer cells. Consequently, L-MSN-based co-delivery of modulators for LIIA shows high anticancer efficacy in several mouse tumor models without toxicity in normal tissues. This study provides new insights into co-delivery of small-molecule drugs, proteins, and nanoparticles for synergistic metabolic modulation in tumors.
Collapse
Affiliation(s)
- Bowon Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Limin Pan
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kang Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taegyu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunjoong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Dayob K, Zengin A, Garifullin R, Guler MO, Abdullin TI, Yergeshov A, Salakhieva DV, Cong HH, Zoughaib M. Metal-Chelating Self-Assembling Peptide Nanofiber Scaffolds for Modulation of Neuronal Cell Behavior. MICROMACHINES 2023; 14:883. [PMID: 37421116 DOI: 10.3390/mi14040883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 07/09/2023]
Abstract
Synthetic peptides are promising structural and functional components of bioactive and tissue-engineering scaffolds. Here, we demonstrate the design of self-assembling nanofiber scaffolds based on peptide amphiphile (PA) molecules containing multi-functional histidine residues with trace metal (TM) coordination ability. The self-assembly of PAs and characteristics of PA nanofiber scaffolds along with their interaction with Zn, Cu, and Mn essential microelements were studied. The effects of TM-activated PA scaffolds on mammalian cell behavior, reactive oxygen species (ROS), and glutathione levels were shown. The study reveals the ability of these scaffolds to modulate adhesion, proliferation, and morphological differentiation of neuronal PC-12 cells, suggesting a particular role of Mn(II) in cell-matrix interaction and neuritogenesis. The results provide a proof-of-concept for the development of histidine-functionalized peptide nanofiber scaffolds activated with ROS- and cell-modulating TMs to induce regenerative responses.
Collapse
Affiliation(s)
- Kenana Dayob
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Aygul Zengin
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Ruslan Garifullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Department of Aeronautical Engineering, University of Turkish Aeronautical Association, Türkkuşu Kampüsü, Ankara 06790, Turkey
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Abdulla Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Diana V Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Hong Hanh Cong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Hanoi 100000, Vietnam
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| |
Collapse
|
9
|
Wu S, Liu C, Li W, Zhang C, Chen D, Xu C, Su L, Wang X. Second near-infrared photoactivatable nanomedicines for enhanced photothermal-chemodynamic therapy of cancer. J Mater Chem B 2023; 11:2455-2465. [PMID: 36810638 DOI: 10.1039/d2tb02769k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nanomedicines have been widely used for cancer therapy, while controlling their activity for effective and safe treatment remains a big challenge. Herein, we report the development of a second near-infrared (NIR-II) photoactivatable enzyme-loaded nanomedicine for enhanced cancer therapy. Such a hybrid nanomedicine contains a thermoresponsive liposome shell loaded with copper sulfide nanoparticles (CuS NPs) and glucose oxidase (GOx). The CuS nanoparticles mediate the generation of local heat under 1064 nm laser irradiation, which not only can be used for NIR-II photothermal therapy (PTT), but also leads to the destruction of the thermal-responsive liposome shell to achieve the on-demand release of CuS nanoparticles and GOx. In a tumor microenvironment, GOx oxidizes glucose to produce hydrogen peroxide (H2O2) that acts as a medium to promote the efficacy of chemodynamic therapy (CDT) by CuS nanoparticles. This hybrid nanomedicine enables the synergetic action of NIR-II PTT and CDT to obviously improve efficacy without remarkable side effects via NIR-II photoactivatable release of therapeutic agents. Such a hybrid nanomedicine-mediated treatment can achieve complete ablation of tumors in mouse models. This study provides a promising nanomedicine with photoactivatable activity for effective and safe cancer therapy.
Collapse
Affiliation(s)
- Shunli Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China. .,School of Medicine, Shanghai University, Shanghai, 200444, China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Wenjuan Li
- First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Shengqiao Community Health Service Centre, Yuepu Town, Baoshan District, Shanghai, 200942, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
10
|
Yin X, Fan T, Zheng N, Yang J, Yan L, He S, Ai F, Hu J. Palladium nanoparticle based smart hydrogels for NIR light-triggered photothermal/photodynamic therapy and drug release with wound healing capability. NANOSCALE ADVANCES 2023; 5:1729-1739. [PMID: 36926581 PMCID: PMC10012852 DOI: 10.1039/d2na00897a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Tumor recurrence and wound repair are two major challenges following cancer surgical resection that can be addressed through precision nanomedicine. Herein, palladium nanoparticles (Pd NPs) with photothermal and photodynamic therapy (PTT/PDT) capacity were successfully synthesized. The Pd NPs were loaded with chemotherapeutic doxorubicin (DOX) to form hydrogels (Pd/DOX@hydrogel) as a smart anti-tumor platform. The hydrogels were composed of clinically approved agarose and chitosan, with excellent biocompatibility and wound healing ability. Pd/DOX@hydrogel can be used for both PTT and PDT with a synergistic effect to kill tumor cells. Additionally, the photothermal effect of Pd/DOX@hydrogel allowed the photo-triggered drug release of DOX. Therefore, Pd/DOX@hydrogel can be used for near-infrared (NIR)-triggered PTT and PDT as well as for photo-induced chemotherapy, efficiently inhibiting tumor growth. Furthermore, Pd/DOX@hydrogel can be used as a temporary biomimetic skin to block the invasion of foreign harmful substances, promote angiogenesis, and accelerate wound repair and new skin formation. Thus, the as-prepared smart Pd/DOX@hydrogel is expected to provide a feasible therapeutic solution following tumor resection.
Collapse
Affiliation(s)
- Xiuzhao Yin
- College of Applied Technology, Shenzhen University Shenzhen 518060 P. R. China
| | - Taojian Fan
- College of Applied Technology, Shenzhen University Shenzhen 518060 P. R. China
| | - Nannan Zheng
- College of Applied Technology, Shenzhen University Shenzhen 518060 P. R. China
| | - Jing Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118 P. R. China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Shuqing He
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Junqing Hu
- College of Applied Technology, Shenzhen University Shenzhen 518060 P. R. China
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| |
Collapse
|
11
|
Wang X, Tang M. Bioceramic materials with ion-mediated multifunctionality for wound healing. SMART MEDICINE 2022; 1:e20220032. [PMID: 39188732 PMCID: PMC11235610 DOI: 10.1002/smmd.20220032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 08/28/2024]
Abstract
Regeneration of both anatomic and functional integrity of the skin tissues after injury represents a huge challenge considering the sophisticated healing process and variability of specific wounds. In the past decades, numerous efforts have been made to construct bioceramic-based wound dressing materials with ion-mediated multifunctionality for facilitating the healing process. In this review, the state-of-the-art progress on bioceramic materials with ion-mediated bioactivity for wound healing is summarized. Followed by a brief discussion on the bioceramic materials with ion-mediated biological activities, the emerging bioceramic-based materials are highlighted for wound healing applications owing to their ion-mediated bioactivities, including anti-infection function, angiogenic activity, improved skin appendage regeneration, antitumor effect, and so on. Finally, concluding remarks and future perspectives of bioceramic-based wound dressing materials for clinical practice are briefly discussed.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Min Tang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
12
|
He Y, Chen R, Zhao C, Lu Q, Chen Z, Zhu H, Bu Q, Wang L, He H. Design of Near-Infrared-Triggered Cellulose Nanocrystal-Based In Situ Intelligent Wound Dressings for Drug-Resistant Bacteria-Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51630-51644. [PMID: 36375077 DOI: 10.1021/acsami.2c13203] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Postoperative infected wound complications caused by residual tumor cells, bacterial biofilms, and drug-resistant bacteria have become the main challenge in postsurgical skin regeneration. Herein, a bionic cellulose nanocrystal (CNC)-based in situ intelligent wound dressing with near-infrared (NIR)-, temperature-, and pH-responsive functions was designed by using NIR-responsive CNC as the network skeleton, dynamic imine bonds between dialdehyde cellulose nanocrystals and doxorubicin, chitosan oligosaccharide as the pH-responsive switch, and temperature-sensitive poly(N-isopropyl acrylamide) as the temperature-responsive in situ formation switch. The as-prepared wound dressing with the intertwining three-dimensional (3D) network structure possessed high drug loadability of indocyanine green (30 mg/g) and doxorubicin (420 mg/g) simultaneously. The temperature-, NIR-, and pH-responsive switches endowed the wound dressing with controllable on-demand drug release behavior. In particular, the temperature switch endowed the dressing with a shape-adaptable ability on irregularly infected wounds. Interestingly, the wound dressing showed excellent antitumor activity for A375 tumor cells, antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and bacterial biofilm removal ability. Therefore, the developed wound dressing can provide an ideal synergistic treatment strategy combined with chemotherapy and photodynamic and photothermal therapy for postoperative drug-resistant bacteria-infected wound healing.
Collapse
Affiliation(s)
- Yonghui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Rimei Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Chao Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Qin Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Zhiping Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Qing Bu
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P. R. China
| | - Lei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| |
Collapse
|
13
|
Ma J, Wu C. Bioactive inorganic particles-based biomaterials for skin tissue engineering. EXPLORATION (BEIJING, CHINA) 2022; 2:20210083. [PMID: 37325498 PMCID: PMC10190985 DOI: 10.1002/exp.20210083] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The challenge for treatment of severe cutaneous wound poses an urgent clinical need for the development of biomaterials to promote skin regeneration. In the past few decades, introduction of inorganic components into material system has become a promising strategy for improving performances of biomaterials in the process of tissue repair. In this review, we provide a current overview of the development of bioactive inorganic particles-based biomaterials used for skin tissue engineering. We highlight the three stages in the evolution of the bioactive inorganic biomaterials applied to wound management, including single inorganic materials, inorganic/organic composite materials, and inorganic particles-based cell-encapsulated living systems. At every stage, the primary types of bioactive inorganic biomaterials are described, followed by citation of the related representative studies completed in recent years. Then we offer a brief exposition of typical approaches to construct the composite material systems with incorporation of inorganic components for wound healing. Finally, the conclusions and future directions are suggested for the development of novel bioactive inorganic particles-based biomaterials in the field of skin regeneration.
Collapse
Affiliation(s)
- Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
14
|
Huang J, Wang S, Wang X, Zhu J, Wang Z, Zhang X, Cai K, Zhang J. Combination wound healing using polymer entangled porous nanoadhesive hybrids with robust ROS scavenging and angiogenesis properties. Acta Biomater 2022; 152:171-185. [PMID: 36084921 DOI: 10.1016/j.actbio.2022.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Nanoadhesives can achieve tight wound closure by connecting biomacromolecules from both sides. However, previously developed adhesive systems suffered from suboptimal wound healing efficiency due to the lack of interparticle cohesion, sufficient reactive oxygen species (ROS)-scavenging sites, and angiogenesis consideration. Herein, we developed a polymer entangled porous nanoadhesive system to address the above challenge by synergy of three functional components. Firstly, hybrid mesoporous silica nanoparticles with highly integrated polydopamine (MS-PDA) were prepared by templated synthesis. The entangling between PVA polymer and MS-PDA contributed to much stronger cohesion between nanoparticles, which led to 75% larger adhesion strength. As confirmed by in vitro and in vivo evaluations, the highly exposed catechol groups boosted the scavenging activity of ROS (1.8-4.1 fold enhancement as compared with nonporous counterpart). Consequently, more macrophages exhibited anti-inflammatory phenotype, leading to 2-2.6 fold lower pro-inflammatory cytokine levels. Moreover, the sustained release of bioactive SiO44- by the disintegration of nanoparticles contributed to ∼3-fold higher expression of VEGF and enhanced new blood vessel formation, as well as better wound repair. This platform can provide a new paradigm for developing multifunctional nanoadhesive systems in treating skin wounds. STATEMENT OF SIGNIFICANCE: PVA polymer entangled mesoporous nanoadhesives of polydopamine (PDA)/silica hybrids with the combination of excellent wound closure effect, boosted ROS-scavenging activity, and significant angiogenesis ability were developed for improving the suboptimal skin wound healing efficiency. This strategy not only greatly advances our ability to rationally integrate repairing elements in nanoadhesives for manipulating combined processes of interfacial events during wound healing, but also offers general implications toward application of polymers to reinforce the adhesion strength in nanoadhesive systems. In addition, our findings on the impacts of pore effects mediated ROS species conversion and polymer entanglement may also trigger great interests and facilitate the development/broad application of therapeutic adhesives.
Collapse
Affiliation(s)
- Jixi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Shuai Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Xiaoping Wang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| |
Collapse
|
15
|
Wang J, Xu W, Qian J, Wang Y, Hou G, Suo A, Ma Y. Injectable hyaluronan/MnO 2 nanocomposite hydrogel constructed by metal-hydrazide coordinated crosslink mineralization for relieving tumor hypoxia and combined phototherapy. J Colloid Interface Sci 2022; 628:79-94. [PMID: 35985065 DOI: 10.1016/j.jcis.2022.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
Hydrogel-based drug delivery holds great promise in topical tumor treatment. However, the simple construction of multifunctional therapeutic hydrogels under physiological conditions is still a huge challenge. Herein, for the first time, a multifunctional hyaluronan/MnO2 nanocomposite (HHM) hydrogel with injectable and self-healing capabilities was constructed under physiological conditions through innovative in situ mineralization-triggered Mn-hydrazide coordination crosslinking. The hydrogel formed from Mn2+ and hydrazided hyaluronan under optimized conditions exhibited a high elastic modulus >1 kPa, injectability, self-healing function, stimuli-responsiveness and catalase-like activity. In vitro and in vivo biological experiments demonstrated that our HHM hydrogel could not only efficiently relieve hypoxia by in situ catalytic decomposition of endogenous H2O2 into O2 but also achieve synergistic photodynamic/photothermal therapy of 4T1 breast cancer in a mouse tumor model. This study presented a novel mineralization-driven metal-hydrazide coordination crosslinking approach and developed a multifunctional therapeutic platform for O2-enhanced efficient topical dual-phototherapy of breast cancer.
Collapse
Affiliation(s)
- Jinlei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China; Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaping Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanghui Hou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yu Ma
- Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China
| |
Collapse
|
16
|
Fan C, Xu Q, Hao R, Wang C, Que Y, Chen Y, Yang C, Chang J. Multi-functional wound dressings based on silicate bioactive materials. Biomaterials 2022; 287:121652. [PMID: 35785753 DOI: 10.1016/j.biomaterials.2022.121652] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
Most traditional wound dressings passively offer a protective barrier for the wounds, which lacks the initiative in stimulating tissue regeneration. In addition, cutaneous wound healing is usually accompanied by various complicated conditions, including bacterial infection, skin cancer, and damaged skin appendages, bringing further challenges for wound management in clinic. Therefore, an ideal wound dressing should not only actively stimulate wound healing but also hold multi-functions for solving problems associated with different specific wound conditions. Recent studies have demonstrated that silicate bioceramics and bioglasses are one type of promising materials for the development of wound dressings, as they can actively accelerate wound healing by regulating endothelial cells, dermal fibroblasts, macrophages, and epidermal cells. In particular, silicate-based biomaterials can be further functionalized by specific structural design or doping with functional components, which endow materials with enhanced bioactivities or expanded physicochemical properties such as photothermal, photodynamic, chemodynamic, or imaging properties. The functionalized materials can be used to address wound healing with different demands including but not limited to antibacterial, anticancer, skin appendages regeneration, and wound monitoring. In this review, we summarized the current research on the development of silicate-based multi-functional wound dressings and prospected the development of advanced wound dressings in the future.
Collapse
Affiliation(s)
- Chen Fan
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Qing Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
| | - Ruiqi Hao
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Chun Wang
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Yumei Que
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Yanxin Chen
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Chen Yang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| | - Jiang Chang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, PR China.
| |
Collapse
|
17
|
Xu Y, Chen H, Fang Y, Wu J. Hydrogel Combined with Phototherapy in Wound Healing. Adv Healthc Mater 2022; 11:e2200494. [PMID: 35751637 DOI: 10.1002/adhm.202200494] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/17/2022] [Indexed: 01/24/2023]
Abstract
Wound healing is a complex biological process that involves tissue regeneration. Traditional wound dressings are dry, cannot provide a moist environment for wound healing, and do not have high antibacterial properties. Hydrogels, which are capable of retaining large amounts of water, can create a moist healing environment. Currently, phototherapies have exhibited a high potential for the treatment of bacterial infections. Therefore, combining hydrogels with phototherapy can adequately overcome the shortcomings of traditional wound treatment methods and show great potential for wound healing owing to their high efficiency, low irritation, and good antibacterial performance. In this review, the application of hydrogels combined with phototherapy in wound healing is summarized. First, the basic principles of photodynamic therapy and photothermal therapy are briefly introduced. In addition, the progress of the application of hydrogel combined with phototherapy in wound healing is systematically investigated. Finally, the challenges and prospects of combining hydrogel with phototherapy in wound healing are discussed.
Collapse
Affiliation(s)
- Yinglin Xu
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Shenzhen, 518107, China
| | - Haolin Chen
- Department of Haematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, 510006, China
| | - Jun Wu
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
18
|
Deng Y, Ouyang X, Sun J, Shi X, Li Y, Chan YK, Yang W, Peng S. Rapid sterilisation and diabetic cutaneous regeneration using cascade bio-heterojunctions through glucose oxidase-primed therapy. Bioact Mater 2022; 25:748-765. [PMID: 37056260 PMCID: PMC10087611 DOI: 10.1016/j.bioactmat.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 11/19/2022] Open
Abstract
The cutaneous wound in diabetic patients frequently encounters intractable pathogenic infections due to the hyperglycemia micromilieu which is conducive to bacterial growth and multiplication. Despite the extensive clinical use of antibiotics to treat bacterial infections, the emergence of drug-resistant and super pathogens as well as the potential side effects of antibiotics have elicited alarming challenges to public health. To address this daunting concern, we devise and develop a photo-activated cascade bio-heterojunctions (C-bio-HJs) for rapid sterilization and diabetic cutaneous regeneration. In the designed C-bio-HJs, photo-generated electron-hole pairs of graphite-phase carbon nitride (g-C3N4) are effectively separated with the marriage of molybdenum disulfide (MoS2), which achieves the augmented photodynamic antibacterial effect. Moreover, glucose oxidase (GOx) tethered on the bio-HJs catalyzes glucose into hydrogen peroxide (H2O2) in diabetic wounds for starvation therapy. Furthermore, Mo4+ enables the catalysis of H2O2 into a highly effective hydroxyl radical (·OH) for chemodynamic-photothermal combined antibacterial therapy. Both in vitro and in vivo results authenticate the cascading antibacterial properties and skin regeneration-promoting effects of the C-bio-HJs, which provide a facile strategy to combat diabetic wound healing through the synergistic GOx-primed dynamic therapies.
Collapse
Affiliation(s)
- Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Xumei Ouyang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Jiyu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiuyuan Shi
- Department of Materials, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, United States
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Corresponding author.
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
- Corresponding author.
| |
Collapse
|
19
|
Chen H, Sun R, Zheng J, Kawazoe N, Yang Y, Chen G. Doxorubicin-encapsulated thermosensitive liposome-functionalized photothermal composite scaffolds for synergistic photothermal therapy and chemotherapy. J Mater Chem B 2022; 10:4771-4782. [PMID: 35671131 DOI: 10.1039/d2tb00993e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synergistic therapy, especially the combination of photothermal therapy and chemotherapy, has been proposed as an effective therapeutic approach for breast cancer treatment. In this study, a smart platform for synergistic photothermal therapy and chemotherapy was developed by hybridizing doxorubicin-encapsulated thermosensitive liposomes and gold nanorods into porous scaffolds of gelatin and polyglutamic acid (Dox-lipo/AuNR/Gel/PGA). The Dox-lipo/AuNR/Gel/PGA composite scaffolds had good photothermal conversion and temperature-dependent doxorubicin release properties. Under near-infrared laser irradiation, the composite scaffolds increased the local temperature to not only kill the breast cancer cells in the scaffolds but also accelerate the release of doxorubicin to eliminate the breast cancer cells surrounding the scaffolds. In vitro cell culture and in vivo mouse experiments demonstrated that the synergistic effects of photothermal ablation combined with doxorubicin-induced inhibition of the breast cancer cells in and surrounding the composite scaffolds under near-infrared laser irradiation. Moreover, after drug release was complete, the composite scaffolds fostered human bone marrow-derived mesenchymal stem cell proliferation. These results suggested that the composite scaffolds provided synergistic photothermal therapy and chemotherapy for breast cancer cell elimination at the early stage and promoted stem cell activities at the late stage. Therefore, this composite scaffold holds great potential as a synergistic therapy platform for breast cancer treatment.
Collapse
Affiliation(s)
- Huajian Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Rui Sun
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Jing Zheng
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
20
|
Xu X, Mao H, Wu Y, Liu S, Liu J, Li Q, Yang M, Zhu J, Zou S, Du F. Fabrication of methylene blue-loaded ovalbumin/polypyrrole nanoparticles for enhanced phototherapy-triggered antitumour immune activation. J Nanobiotechnology 2022; 20:297. [PMID: 35733214 PMCID: PMC9214988 DOI: 10.1186/s12951-022-01507-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/14/2022] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Phototherapy-triggered immunogenic cell death (ICD) rarely elicits a robust antitumour immune response, partially due to low antigen exposure and inefficient antigen presentation. To address these issues, we developed novel methylene blue-loaded ovalbumin/polypyrrole nanoparticles (MB@OVA/PPY NPs) via oxidative polymerization and π-π stacking interactions. RESULTS The as-prepared MB@OVA/PPY NPs with outstanding photothermal conversion efficiency (38%) and photodynamic properties were readily internalized into the cytoplasm and accumulated in the lysosomes and mitochondria. Upon 808 nm and 660 nm laser irradiation, the MB@OVA/PPY NPs not only ablated tumour cells by inducing local hyperthermia but also damaged residual tumour cells by generating a large amount of reactive oxygen species (ROS), finally triggering the release of many damage-associated molecular patterns (DAMPs). Moreover, the MB@OVA/PPY NPs synergized with DAMPs to promote the maturation and improve the antigen presentation ability of DCs in vitro and in vivo. CONCLUSIONS This work reported a PPY NPs-based nanoplatform to encapsulate the therepeutic proteins and absorb the functional molecules for combination therapy of tumours. The results demonstrated that the prepared MB@OVA/PPY NPs could be used as effective nanotherapeutic agents to eliminate solid tumours and trigger a powerful antitumour immune response.
Collapse
Affiliation(s)
- Xiao Xu
- Affiliated Third Hospital of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Huafen Mao
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China.,Lianyungang Maternal and Child Health Hospital, Lianyungang, 222000, People's Republic of China
| | - Yunchao Wu
- Clinical Laboratory, The Third People's Hospital of Changzhou, Changzhou, 213001, People's Republic of China
| | - Suwan Liu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jingjin Liu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Qianzhe Li
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Mengyu Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jinqian Zhu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shengqiang Zou
- Affiliated Third Hospital of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Fengyi Du
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
21
|
Meng X, Lu Z, Lv Q, Jiang Y, Zhang L, Wang Z. Tumor metabolism destruction via metformin-based glycolysis inhibition and glucose oxidase-mediated glucose deprivation for enhanced cancer therapy. Acta Biomater 2022; 145:222-234. [PMID: 35460908 DOI: 10.1016/j.actbio.2022.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/17/2022] [Accepted: 04/12/2022] [Indexed: 01/06/2023]
Abstract
Cancer cells rely on glycolysis to support a high proliferation rate. Metformin (Met) is a promising drug for tumor treatment that targets hexokinase 2 (HK2) to block the glycolytic process, thereby further disrupting the metabolism of cancer cells. Herein, an intelligent nanomedicine based on glucose deprivation and glycolysis inhibition is creatively constructed for enhanced cancer synergistic treatment. In brief, Met and glucose oxidase (GOx) was encapsulated into histidine/zeolitic imidazolate framework-8 (His/ZIF-8), which was followed by coating with Arg-Gly-Asp (RGD) peptides to obtain the desired nanomedicine (Met/GOx@His/ZIF-8∼RGD). This smart nanomedicine presents the controllable Met and GOx release behavior in an acidic responsive manner. The liberated Met blocks the glycolysis process via suppressing the activity of HK2 and impairing ATP production, which activates the AMP-activated protein kinase (AMPK) pathway and p53 pathway and damages the Warburg effect, eventually leading to cells apoptosis. And the GOx boosts the glucose shortage for starvation therapy by depleting accumulated glucose. According to in vitro and in vivo assays, the combination of glycolysis inhibition and starvation therapy demonstrates efficient cancer cells growth suppression and superior antitumor properties compared to the Met based or GOx-mediated monotherapy. This work provides an advanced therapeutic strategy via disrupting cellular metabolism against cancer. STATEMENT OF SIGNIFICANCE: The obtained nanomedicine (Met/GOx@His/ZIF-8∼RGD) presents the controllable Met and glucose oxidase (GOx) release behavior in an acidic responsive manner. The liberated Met blocks the glycolysis process via suppressing the activity of HK2 and impairing ATP production, which activates the AMP-activated protein kinase (AMPK) pathway and p53 pathway and damages the Warburg effect, eventually leading to cells apoptosis. And the GOx boosts the glucose shortage for starvation therapy by depleting accumulated glucose. The combination of glycolysis inhibition and starvation therapy demonstrate the efficient suppression of cancer cells growth and the superior antitumor properties when compared to the Met based or GOx-mediated monotherapy.
Collapse
|
22
|
Zhang H, Zhang M, Zhang X, Gao Y, Ma Y, Chen H, Wan J, Li C, Wang F, Sun X. Enhanced postoperative cancer therapy by iron-based hydrogels. Biomater Res 2022; 26:19. [PMID: 35606838 PMCID: PMC9125885 DOI: 10.1186/s40824-022-00268-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022] Open
Abstract
AbstractSurgical resection is a widely used method for the treatment of solid tumor cancers. However, the inhibition of tumor recurrence and metastasis are the main challenges of postoperative tumor therapy. Traditional intravenous or oral administration have poor chemotherapeutics bioavailability and undesirable systemic toxicity. Polymeric hydrogels with a three-dimensional network structure enable on-site delivery and controlled release of therapeutic drugs with reduced systemic toxicity and have been widely developed for postoperative adjuvant tumor therapy. Among them, because of the simple synthesis, good biocompatibility, biodegradability, injectability, and multifunctionality, iron-based hydrogels have received extensive attention. This review has summarized the general synthesis methods and construction principles of iron-based hydrogels, highlighted the latest progress of iron-based hydrogels in postoperative tumor therapy, including chemotherapy, photothermal therapy, photodynamic therapy, chemo-dynamic therapy, and magnetothermal-chemical combined therapy, etc. In addition, the challenges towards clinical application of iron-based hydrogels have also been discussed. This review is expected to show researchers broad perspectives of novel postoperative tumor therapy strategy and provide new ideas in the design and application of novel iron-based hydrogels to advance this sub field in cancer nanomedicine.
Collapse
|
23
|
Sutrisno L, Chen H, Yoshitomi T, Kawazoe N, Yang Y, Chen G. PLGA-collagen-BPNS Bifunctional composite mesh for photothermal therapy of melanoma and skin tissue engineering. J Mater Chem B 2022; 10:204-213. [PMID: 34935026 DOI: 10.1039/d1tb02366g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The treatment of melanoma requires not only the elimination of skin cancer cells but also skin regeneration to heal defects. To achieve this goal, a bifunctional composite scaffold of poly(DL-lactic-co-glycolic acid) (PLGA), collagen and black phosphorus nanosheets (BPNSs) was prepared by hybridizing a BPNS-embedded collagen sponge with a PLGA knitted mesh. The composite mesh increased the temperature under near-infrared laser irradiation. The incorporation of BPNSs provided the PLGA-collagen-BPNS composite mesh with excellent photothermal properties for the photothermal ablation of melanoma cells both in vitro and in vivo. The PLGA-collagen-BPNS composite mesh had high mechanical strength for easy handling. The PLGA-collagen-BPNS composite mesh facilitated the proliferation of fibroblasts, promoted the expression of angiogenesis-related genes and the genes of components of the extracellular matrix for skin tissue regeneration. The high mechanical strength, photothermal ablation capability and skin tissue regeneration effects demonstrate that the bifunctional PLGA-collagen-BPNS composite mesh is a versatile and effective platform for the treatment of melanoma and the regeneration of skin defects.
Collapse
Affiliation(s)
- Linawati Sutrisno
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Huajian Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|