1
|
Fu M, Zhou P, Sheng W, Bai Z, Wang J, Zhu X, Hua L, Pan B, Gao F. Magnetically Controlled Photothermal, Colorimetric, and Fluorescence Trimode Assay for Gastric Cancer Exosomes Based on Acid-Induced Decomposition of CP/Mn-PBA DSNBs. Anal Chem 2024; 96:4213-4223. [PMID: 38427460 DOI: 10.1021/acs.analchem.3c05550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/03/2024]
Abstract
The accurate quantification of cancer-derived exosomes, which are emerging as promising noninvasive biomarkers for liquid biopsies in the early diagnosis of cancer, is becoming increasingly imperative. In our work, we developed a magnetically controlled photothermal, colorimetric, and fluorescence trimode aptasensor for human gastric cancer cell (SGC-7901)-derived exosomes. This sensor relied on CP/Mn-PBA DSNBs nanocomposites, created by decorating copper peroxide (CP) nanodots on polyethyleneimine-modified manganese-containing Prussian blue analogues double-shelled nanoboxes (PEI-Mn-PBA DSNBs). Through self-assembly, we attached CD63 aptamer-labeled CP/Mn-PBA DSNBs (Apt-CP/Mn-PBA DSNBs) to complementary DNA-labeled magnetic beads (cDNA-MB). During exosome incubation, these aptamers preferentially formed complexes with exosomes, and we efficiently removed the released CP/Mn-PBA DSNBs by using magnetic separation. The CP/Mn-PBA DSNBs exhibited high photoreactivity and photothermal conversion efficiency under near-infrared (NIR) light, leading to temperature variations under 808 nm irradiation, correlating with different exosome concentrations. Additionally, colorimetric detection was achieved by monitoring the color change in a 3,3',5,5'-tetramethylbenzidine (TMB) system, facilitated by PEI modification, NIR-enhanced peroxidase-like activity of CP/Mn-PBA DSNBs and their capacity to generate Cu2+ and H2O2 under acidic conditions. Moreover, in the presence of Cu2+ and ascorbic acid (AA), DNA sequences could form dsDNA-templated copper nanoparticles (CuNPs), which emitted strong fluorescence at around 575 nm. Increasing exosome concentrations correlated with decreases in temperature, absorbance, and fluorescence intensity. This trimode biosensor demonstrated satisfactory ability in differentiating gastric cancer patients from healthy individuals using human serum samples.
Collapse
Affiliation(s)
- Mengying Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Weiwei Sheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Zetai Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Hua
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Bin Pan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
2
|
Cai R, Wu K, Chen H, Chen X, Zhang Y, Wang X, Zhou N. Nanosensor Based on the Dual-Entropy-Driven Modulation Strategy for Intracellular Detection of MicroRNA. Anal Chem 2023; 95:18199-18206. [PMID: 38032800 DOI: 10.1021/acs.analchem.3c03843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/02/2023]
Abstract
The entropy-driven strategy has been proposed as a milestone work in the development of nucleic acid amplification technology. With the characteristics of an enzyme-free, isothermal, and relatively simple design, it has been widely used in the field of biological analysis. However, it is still a challenge to apply entropy-driven amplification for intracellular target analysis. In this study, a dual-entropy-driven amplification system constructed on the surface of gold nanoparticles (AuNPs) is developed to achieve fluorescence determination and intracellular imaging of microRNA-21 (miRNA-21). The dual-entropy-driven amplification strategy internalizes the fuel chain to avoid the complexity of the extra addition in the traditional entropy-driven amplification strategy. The unique self-locked fuel chain system is established by attaching the three-stranded structure on two groups of AuNPs, where the Cy5 fluorescent label was first quenched by AuNPs. After the target miRNA-21 is identified, the fuel chain will be automatically unlocked, and the cycle reaction will be driven, leading to fluorescence recovery. The self-powered and waste-recycled fuel chain greatly improves the automation and intelligence of the reaction process. Under the optimal conditions, the linear response range of the nanosensor ranges from 5 pM to 25 nM. This nanoreaction system can be used to realize intracellular imaging of miRNA-21, and its good specificity enables it to distinguish tumor cells from healthy cells. The development of the dual-entropy-driven strategy provides an integrated and powerful way for intracellular miRNA analysis and shows great potential in the biomedical field.
Collapse
Affiliation(s)
- Rongfeng Cai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kexin Wu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haohan Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Yang C, Wang K, Liang G, Tian S, Peng J, Mo L, Lin W. A versatile MOF-derived theranostic for dual-miRNA controlled accurate cancer cell recognition and photodynamic therapy. Talanta 2023; 265:124805. [PMID: 37331042 DOI: 10.1016/j.talanta.2023.124805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Precise detection and monitoring of microRNAs (miRNAs) in living tumor cells is significant for the prompt diagnosis of cancer and provides important information for treatment of cancer. A significant challenge is developing methods for imaging different miRNAs simultaneously to further enhance diagnostic and treatment accuracy. In this work, a versatile MOF-derived theranostic system (DAPM) was constructed using photosensitive metal-organic frameworks (PMOF, PM) and a DNA AND logic gate (DA). The DAPM exhibited excellent biostability and enabled sensitive detection of miR-21 and miR-155, achieving a low limit of detection (LOD) for miR-21 (89.10 pM) and miR-155 (54.02 pM). The DAPM probe generated a fluorescence signal in tumor cells where miR-21 and miR-155 co-existed, demonstrating the enhanced ability of tumor cell recognition. Additionally, the DAPM achieved efficient ROS generation and concentration-dependent cytotoxicity under light irradiation, providing effective photodynamic therapy for anti-tumors. The proposed DAPM theranostic system enables accurate cancer diagnosis, and provides spatial and temporal information for PDT.
Collapse
Affiliation(s)
- Chan Yang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Kun Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Guohan Liang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuo Tian
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Juanjuan Peng
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Liuting Mo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
4
|
Qin Z, Zhang J, Li S. Molybdenum Disulfide as Tunable Electrochemical and Optical Biosensing Platforms for Cancer Biomarker Detection: A Review. BIOSENSORS 2023; 13:848. [PMID: 37754082 PMCID: PMC10527254 DOI: 10.3390/bios13090848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Cancer is a common illness with a high mortality. Compared with traditional technologies, biomarker detection, with its low cost and simple operation, has a higher sensitivity and faster speed in the early screening and prognosis of cancer. Therefore, extensive research has focused on the development of biosensors and the construction of sensing interfaces. Molybdenum disulfide (MoS2) is a promising two-dimensional (2D) nanomaterial, whose unique adjustable bandgap shows excellent electronic and optical properties in the construction of biosensor interfaces. It not only has the advantages of a high catalytic activity and low manufacturing costs, but it can also further expand the application of hybrid structures through different functionalization, and it is widely used in various biosensors fields. Herein, we provide a detailed introduction to the structure and synthesis methods of MoS2, and explore the unique properties and advantages/disadvantages exhibited by different structures. Specifically, we focus on the excellent properties and application performance of MoS2 and its composite structures, and discuss the widespread application of MoS2 in cancer biomarkers detection from both electrochemical and optical dimensions. Additionally, with the cross development of emerging technologies, we have also expanded the application of other emerging sensors based on MoS2 for early cancer diagnosis. Finally, we summarized the challenges and prospects of MoS2 in the synthesis, functionalization of composite groups, and applications, and provided some insights into the potential applications of these emerging nanomaterials in a wider range of fields.
Collapse
Affiliation(s)
- Ziyue Qin
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jiawei Zhang
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang Li
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Xing Y, Wang Y, Liu L, Wu Z. Fabrication of MoS 2/C 60 Nanolayer Field-Effect Transistor for Ultrasensitive Detection of miRNA-155. MICROMACHINES 2023; 14:660. [PMID: 36985067 PMCID: PMC10056608 DOI: 10.3390/mi14030660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/24/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
As a major public health issue, early cancer detection is of great significance. A field-effect transistor (FET) based on an MoS2/C60 composite nanolayer as the channel material enhances device performance by adding a light source, allowing the ultrasensitive detection of cancer-related miRNA. In this work, atomic layer deposition (ALD) was used to deposit MoS2 layer by layer, and C60 was deposited by an evaporation coater to obtain a composite nanolayer with good surface morphology as the channel material of the FET. Based on the good absorption of C60 by blue-violet light, a 405 nm laser was selected to irradiate the channel material, improving the function of FET biosensors. A linear detection window from 10 pM to 1 fM with an ultralow detection limit of 5.16 aM for miRNA-155 was achieved.
Collapse
Affiliation(s)
| | | | | | - Ze Wu
- Correspondence: (Y.X.); (Z.W.)
| |
Collapse
|
6
|
Sun Y, Wang Y, Fang L, Xu T. Signal differentiation models for multiple microRNA detection: a critical review. Anal Bioanal Chem 2023. [PMID: 36864312 DOI: 10.1007/s00216-023-04626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/04/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, single-stranded non-coding RNAs which have critical functions in various biological processes. Increasing evidence suggested that abnormal miRNA expression was closely related to many human diseases, and they are projected to be very promising biomarkers for non-invasive diagnosis. Multiplex detection of aberrant miRNAs has great advantages including improved detection efficiency and enhanced diagnostic precision. Traditional miRNA detection methods do not meet the requirements of high sensitivity or multiplexing. Some new techniques have opened novel paths to solve analytical challenges of multiple miRNA detection. Herein, we give a critical overview of the current multiplex strategies for the simultaneous detection of miRNAs from the perspective of two different signal differentiation models, including label differentiation and space differentiation. Meanwhile, recent advances of signal amplification strategies integrated into multiplex miRNA methods are also discussed. We hope this review provides the reader with future perspectives on multiplex miRNA strategies in biochemical research and clinical diagnostics.
Collapse
Affiliation(s)
- Yue Sun
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Yinan Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China
| | - Luo Fang
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China.
| |
Collapse
|
7
|
Sun Z, Wu Y, Gao F, Li H, Wang C, Du L, Dong L, Jiang Y. In situ detection of exosomal RNAs for cancer diagnosis. Acta Biomater 2023; 155:80-98. [PMID: 36343908 DOI: 10.1016/j.actbio.2022.10.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Exosomes are considered as biomarkers reflecting the physiological state of the human body. Studies have revealed that the expression levels of specific exosomal RNAs are closely associated with certain cancers. Thus, detection of exosomal RNA offers a new avenue for liquid biopsy of cancers. Many exosomal RNA detection methods based on various principles have been developed, and most of the methods detect the extracted RNAs after lysing exosomes. Besides complex and time-consuming extraction steps, a major drawback of this approach is the degradation of the extracted RNAs in the absence of plasma membrane and cytosol. In addition, there is considerable loss of RNAs during their extraction. In situ detection of exosomal RNAs can avoid these drawbacks, thus allowing higher diagnostic reliability. In this paper, in situ detection of exosomal RNAs was systematically reviewed from the perspectives of detection methods, transport methods of the probe systems, probe structures, signal amplification strategies, and involved functional materials. Furthermore, the limitations and possible improvements of the current in situ detection methods for exosomal RNAs towards the clinical diagnostic application are discussed. This review aims to provide a valuable reference for the development of in situ exosomal RNA detection strategies for non-invasive diagnosis of cancers. STATEMENT OF SIGNIFICANCE: Certain RNAs have been identified as valuable biomarkers for some cancers, and sensitive detection of cancer-related RNAs is expected to achieve better diagnostic efficacy. Currently, the detection of exosomal RNAs is receiving increasing attention due to their high stability and significant concentration differences between patients and healthy individuals. In situ detection of exosomal RNAs has greater diagnostic reliability due to the avoidance of RNA degradation and loss. However, this mode is still limited by some factors such as detection methods, transport methods of the probe systems, probe structures, signal amplification strategies, etc. This review focuses on the progress of in situ detection of exosomal RNAs and aims to promote the development of this field.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Yanqiu Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Fucheng Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Lun Dong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
8
|
Allegra A, Cancemi G, Mirabile G, Tonacci A, Musolino C, Gangemi S. Circulating Tumour Cells, Cell Free DNA and Tumour-Educated Platelets as Reliable Prognostic and Management Biomarkers for the Liquid Biopsy in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14174136. [PMID: 36077672 PMCID: PMC9454477 DOI: 10.3390/cancers14174136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Even though the presently employed biomarkers in the detection and management of multiple myeloma are demonstrating encouraging results, the mortality percentage of the malignancy is still elevated. Thus, searching for new diagnostic or prognostic markers is pivotal. Liquid biopsy allows the examination of circulating tumour DNA, cell-free DNA, extracellular RNA, and cell free proteins, which are released into the bloodstream due to the breakdown of tumour cells or exosome delivery. Liquid biopsy can now be applied in clinical practice to diagnose, and monitor multiple myeloma, probably allowing a personalized treatment of the disease. Abstract Liquid biopsy is one of the fastest emerging fields in cancer evaluation. Circulating tumour cells and tumour-originated DNA in plasma have become the new targets for their possible employ in tumour diagnosis, and liquid biopsy can define tumour burden without invasive procedures. Multiple Myeloma, one of the most frequent hematologic tumors, has been the target of therapeutic progresses in the last few years. Bone marrow aspirate is the traditional tool for diagnosis, prognosis, and genetic evaluation in multiple myeloma patients. However, this painful procedure presents a relevant drawback for regular disease examination as it requires an invasive practice. Moreover, new data demonstrated that a sole bone marrow aspirate is incapable of expressing the multifaceted multiple myeloma genetic heterogeneity. In this review, we report the emerging usefulness of the assessment of circulating tumour cells, cell-free DNA, extracellular RNA, cell-free proteins, extracellular vesicles, and tumour-educated platelets to evaluate the changing mutational profile of multiple myeloma, as early markers of disease, reliable predictors of prognosis, and as useful tools to perform less invasive monitoring in multiple myeloma.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Gabriella Cancemi
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
9
|
Kaur G, Sharma S, Singh S, Bhardwaj N, Deep A. Selective and Sensitive Electrochemical Sensor for Aflatoxin M1 with a Molybdenum Disulfide Quantum Dot/Metal-Organic Framework Nanocomposite. ACS OMEGA 2022; 7:17600-17608. [PMID: 35664620 PMCID: PMC9161392 DOI: 10.1021/acsomega.2c00126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/07/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Aflatoxins are the hepatotoxic secondary metabolites which are highly carcinogenic and known to cause several adverse effects on human health. The present study reports a simple, sensitive, and novel electrochemical sensor for aflatoxin M1 (AFM1). The sensor has been fabricated by modifying the screen-printed carbon electrodes with a functional nanocomposite of molybdenum disulfide (MoS2) quantum dots (QDs) and a zirconium-based metal-organic framework (MOF), that is, UiO-66-NH2. The MoS2/UiO-66-modified electrodes were decorated with the AFM1-specific monoclonal antibodies and then investigated for the electrochemical detection of AFM1. Based on the electrochemical impedance spectroscopy analysis, it was possible to detect AFM1 in the concentration range of 0.2-10 ng mL-1 with a limit of detection of 0.06 ng mL-1. The realization of an excellent sensing performance can be attributed to the electroactivity of MoS2 QDs and the large surface to volume area achieved by the addition of the MOF. The presence of UiO-66-NH2 is also useful to attain readily available amine functionality for the robust interfacing of antibodies. The performance of the developed sensor has also been validated by detecting AFM1 in the spiked milk samples.
Collapse
Affiliation(s)
- Gurjeet Kaur
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- CSIR-Central
Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh 160030, India
| | - Saloni Sharma
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- CSIR-Central
Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh 160030, India
| | - Shalini Singh
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- CSIR-Central
Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh 160030, India
| | - Neha Bhardwaj
- Department
of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh 160014, India
| | - Akash Deep
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- CSIR-Central
Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh 160030, India
| |
Collapse
|
10
|
Chen S, Li Z, Huang Z, Jia Q. Construction of a copper nanocluster/MnO 2 nanosheet-based fluorescent platform for butyrylcholinesterase activity detection and anti-Alzheimer's drug screening. J Mater Chem B 2022; 10:4783-4788. [PMID: 35343562 DOI: 10.1039/d2tb00318j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
An abnormal level of butyrylcholinesterase (BChE) activity is highly connected with hepatic damage and Alzheimer's disease. Herein, a facile and efficient method was proposed for BChE detection by incorporating polyethyleneimine-capped copper nanoclusters (PEI-CuNCs) with manganese dioxide (MnO2) nanosheets. The emission of PEI-CuNCs can be significantly quenched by MnO2 nanosheets via the inner filter effect. With the addition of BChE, the hydrolysis of butyrylthiocholine iodide produces thiocholine which can reduce MnO2 nanosheets to Mn2+, thus resulting in the fluorescence recovery of PEI-CuNCs. Based on that, a fluorescence "turn-on" sensing platform for BChE activity determination was constructed with a detection limit of 2.26 U L-1. This sensing method is able to detect BChE in human serum samples and identify the serums of normal persons and cirrhotic patients effectively, indicating its great potential in the clinical diagnosis of liver diseases. Furthermore, the approach can also be used to screen BChE inhibitors, which are promising medications to alleviate the symptoms of Alzheimer's disease.
Collapse
Affiliation(s)
- Sihan Chen
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Zheng Li
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|